Quantum Basics
Hilbert space : H = C 2 n \mathcal H = \mathbb C^{2^n} H = C 2 n
wave function : ∣ ϕ ⟩ ∈ H \ket \phi\in \mathcal H ∣ ϕ ⟩ ∈ H
a spin-1 2 \frac{1}{2} 2 1 system, H = C 2 \mathcal H=\mathbb C^2 H = C 2 , ϕ = α ∣ ↑ ⟩ + β ∣ ↓ ⟩ ∣ α ∣ 2 + ∣ β ∣ 2 = 1 \phi = \alpha\ket\uparrow+\beta \ket \downarrow\quad |\alpha|^2+|\beta|^2=1 ϕ = α ∣ ↑ ⟩ + β ∣ ↓ ⟩ ∣ α ∣ 2 + ∣ β ∣ 2 = 1
basic state : ∣ ↑ ⟩ = [ 1 0 ] ∣ ↓ ⟩ = [ 0 1 ] ∣ → ⟩ = 1 2 [ 1 1 ] \ket\uparrow =\begin{bmatrix}1\\0\end{bmatrix}\quad \ket \downarrow =\begin{bmatrix}0\\1\end{bmatrix}\quad \ket \rightarrow=\frac{1}{\sqrt 2}\begin{bmatrix}1\\1\end{bmatrix} ∣ ↑ ⟩ = [ 1 0 ] ∣ ↓ ⟩ = [ 0 1 ] ∣ → ⟩ = 2 1 [ 1 1 ]
pauli matrices : σ x = [ 0 1 1 0 ] σ y = [ 0 − i i 0 ] σ z = [ 1 0 0 − 1 ] \sigma_x=\begin{bmatrix}0&1\\1&0\end{bmatrix}~\sigma_y=\begin{bmatrix}0&-i\\i&0\end{bmatrix}~\sigma_z = \begin{bmatrix}1&0\\0&-1\end{bmatrix} σ x = [ 0 1 1 0 ] σ y = [ 0 i − i 0 ] σ z = [ 1 0 0 − 1 ]
σ i = σ i † \sigma_i = \sigma_i^\dagger σ i = σ i † : Hermitian
σ i = σ i − 1 \sigma_i = \sigma_i^{-1} σ i = σ i − 1 : involutory
σ i 2 = I \sigma_i^2 = I σ i 2 = I
∣ σ i ∣ = − 1 |\sigma_i|=-1 ∣ σ i ∣ = − 1 : determinant
Tr ( σ i ) = 0 \text{Tr}(\sigma_i) = 0 Tr ( σ i ) = 0 : trace
λ = ± 1 \lambda = \pm1 λ = ± 1 : eigen values, eigen vectors are positive negative axes in Bloch sphere
[ σ i , σ j ] = 2 i ϵ i j k σ k [\sigma_i,\sigma_j]=2i\epsilon_{ijk}\sigma_k [ σ i , σ j ] = 2 i ϵ ijk σ k : commutation, ϵ i j k \epsilon_{ijk} ϵ ijk : Levi-Civita symbol
{ σ i , σ j } = 2 δ i j I \{\sigma_i,\sigma_j\} = 2\delta_{ij}I { σ i , σ j } = 2 δ ij I : anti-commutation, δ i j \delta_{ij} δ ij : kronecker delta
Operators :
spin operator : S ^ x = ℏ 2 σ x S ^ y = ℏ 2 σ y S ^ z = ℏ 2 σ z \hat S_x = \frac{\hbar}{2}\sigma_x\quad\hat S_y=\frac{\hbar}{2}\sigma_y\quad \hat S_z=\frac{\hbar}{2}\sigma_z S ^ x = 2 ℏ σ x S ^ y = 2 ℏ σ y S ^ z = 2 ℏ σ z
spin pointing along direction e ⃗ = [ e x , e y , e z ] \vec e =\begin{bmatrix}e_x,e_y,e_z\end{bmatrix} e = [ e x , e y , e z ] e ⃗ ⋅ S ⃗ ^ = ℏ 2 [ e z e x − i e y e x + i e y − e z ] \vec e\cdot\hat {\vec S}=\frac{\hbar}{2}\begin{bmatrix}e_z&e_x-ie_y\\e_x+ie_y&-e_z\end{bmatrix} e ⋅ S ^ = 2 ℏ [ e z e x + i e y e x − i e y − e z ]
position operator : q ^ ∣ ψ ( q ) ⟩ = q ψ ( q ) \hat q\ket {\psi(q)} = q\psi(q) q ^ ∣ ψ ( q ) ⟩ = q ψ ( q )
momentum operator : p ^ = − i ℏ d d q \hat p = -i\hbar \frac{\text d}{\text d q} p ^ = − i ℏ d q d
hamiltonian operator : H ^ = − ℏ 2 2 m ∇ 2 + V \hat H = -\frac{\hbar^2}{2m}\nabla^2 + V H ^ = − 2 m ℏ 2 ∇ 2 + V
kinetic operator : T ^ = ( p ⃗ ) ^ 2 2 m = − i ℏ 2 2 m ∇ 2 \hat T = \frac{\hat{(\vec p)}^2}{2m} = \frac{-i\hbar ^2}{2m}\nabla^2 T ^ = 2 m ( p ) ^ 2 = 2 m − i ℏ 2 ∇ 2
potential operator : V ^ = V \hat V = V V ^ = V
Schrödinger equation :i ℏ ∂ t ∣ ψ ( t ) ⟩ = H ^ ∣ ψ ( t ) ⟩ i\hbar \partial_t \ket{\psi(t)}=\hat H\ket {\psi(t)} i ℏ ∂ t ∣ ψ ( t ) ⟩ = H ^ ∣ ψ ( t ) ⟩
for stationary problem : H ^ ∣ ψ ⟩ = E ∣ ψ ⟩ ψ ( t ) = e − i E t / ℏ ∣ ψ ( 0 ) ⟩ \hat H \ket \psi = E\ket\psi\quad \psi(t)=e^{-iEt/\hbar}\ket {\psi(0)} H ^ ∣ ψ ⟩ = E ∣ ψ ⟩ ψ ( t ) = e − i Et /ℏ ∣ ψ ( 0 ) ⟩
external potential : i ℏ ∂ t ψ ( r ^ ) = − ℏ 2 2 m ∇ 2 ψ ( r ⃗ ) + V ( r ⃗ ) ψ ( r ⃗ ) i\hbar\partial_t\psi(\hat r)=-\frac{\hbar^2}{2m}\nabla^2\psi(\vec r)+V(\vec r)\psi(\vec r) i ℏ ∂ t ψ ( r ^ ) = − 2 m ℏ 2 ∇ 2 ψ ( r ) + V ( r ) ψ ( r )
Notation
H ^ \hat H H ^ Hamilton operator
E E E energy of the system
V V V potential
Example
harmonic oscillator : 1 2 ( p ^ 2 + q ^ 2 ) ∣ ψ ⟩ = E ∣ ψ ⟩ \frac{1}{2}(\hat p^2+\hat q^2)\ket \psi = E \ket \psi 2 1 ( p ^ 2 + q ^ 2 ) ∣ ψ ⟩ = E ∣ ψ ⟩
V ( q ^ ) = 1 2 q ^ 2 V(\hat q) = \frac{1}{2}\hat q^2 V ( q ^ ) = 2 1 q ^ 2
ψ ( q ) = 1 2 n n ! ℏ π e − q 2 / 2 H n ( 1 ℏ q ) \psi(q)=\frac{1}{\sqrt{2^nn!\sqrt{\hbar\pi}}}e^{-q^2/2}H_n\left(\frac{1}{\sqrt \hbar}q\right) ψ ( q ) = 2 n n ! ℏ π 1 e − q 2 /2 H n ( ℏ 1 q )
E = ℏ ( n + 1 2 ) E = \hbar (n+\frac{1}{2}) E = ℏ ( n + 2 1 )
Density matrix : ρ ^ = ∑ i , j p i , j ∣ ψ i ⟩ ⟨ ψ j ∣ \hat \rho = \sum_{i,j}p_{i,j}\ket{\psi_i}\bra{\psi_j} ρ ^ = ∑ i , j p i , j ∣ ψ i ⟩ ⟨ ψ j ∣
purity of the system Tr ( ρ ^ 2 ) \text{Tr}(\hat \rho^2) Tr ( ρ ^ 2 )
for a pure state without noise : ρ ^ pure = ∣ ψ ⟩ ⟨ ψ ∣ \hat \rho_{\text{pure}}=\ket\psi\bra\psi ρ ^ pure = ∣ ψ ⟩ ⟨ ψ ∣
Example
ρ ^ → = ∣ → ⟩ ⟨ → ∣ = [ 1 2 1 2 1 2 1 2 ] \hat\rho_{\rightarrow} = \ket{\rightarrow}\bra{\rightarrow}=\begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{bmatrix} ρ ^ → = ∣ → ⟩ ⟨ → ∣ = [ 2 1 2 1 2 1 2 1 ]
Tr ( ρ ^ → ) = 1 \text{Tr}(\hat \rho_\rightarrow)=1 Tr ( ρ ^ → ) = 1
ρ ^ ↑ ↓ = ∣ ↑ ⟩ ⟨ ↓ ∣ = [ 1 2 0 0 1 2 ] \hat \rho_{\uparrow\downarrow}= \ket{\uparrow}\bra{\downarrow}=\begin{bmatrix}\frac{1}{2}&0\\0&\frac{1}{2}\end{bmatrix} ρ ^ ↑↓ = ∣ ↑ ⟩ ⟨ ↓ ∣ = [ 2 1 0 0 2 1 ]
Tr ( ρ ^ ↑ ↓ ) = 1 2 \text{Tr}(\hat \rho_{\uparrow\downarrow})=\frac{1}{2} Tr ( ρ ^ ↑↓ ) = 2 1
unitary time evolution : i ℏ ∂ t ρ ^ ( t ) = [ H ^ , ρ ^ ( t ) ] i\hbar \partial_t\hat\rho(t)=[\hat H,\hat\rho(t)] i ℏ ∂ t ρ ^ ( t ) = [ H ^ , ρ ^ ( t )]
thermal density matrix : ρ ^ β = 1 ∑ i e − β E i ∑ i e − β E i ∣ i ⟩ ⟨ i ∣ = 1 Tr ( e − β H ^ ) e − β H ^ \hat \rho_\beta = \frac{1}{\sum_i e^{-\beta E_i}}\sum_i e^{-\beta E_i}\ket i\bra i = \frac{1}{\text{Tr}(e^{-\beta \hat H})}e^{-\beta \hat H} ρ ^ β = ∑ i e − β E i 1 ∑ i e − β E i ∣ i ⟩ ⟨ i ∣ = Tr ( e − β H ^ ) 1 e − β H ^
measurement : ⟨ ψ ∣ A ^ ∣ ψ ⟩ = Tr ( ρ ^ A ^ ) \bra \psi \hat A \ket \psi = \text{Tr}(\hat \rho \hat A) ⟨ ψ ∣ A ^ ∣ ψ ⟩ = Tr ( ρ ^ A ^ )
measure non commute operator : [ A ^ , B ^ ] = i ℏ ⇔ Δ A ⋅ Δ B ≥ ℏ 2 [\hat A,\hat B]=i\hbar\Leftrightarrow \Delta A\cdot \Delta B \ge \frac{\hbar}{2} [ A ^ , B ^ ] = i ℏ ⇔ Δ A ⋅ Δ B ≥ 2 ℏ
Quantum 1-body problem
given V V V ,we want to know ψ \psi ψ according to Schrödinger equation − ℏ 2 2 m ∂ x 2 ψ ( x ) + V ( x ) ψ ( x ) = E ψ ( x ) -\frac{\hbar^2}{2m}\partial_x^2\psi(x)+V(x)\psi(x)=E\psi(x) − 2 m ℏ 2 ∂ x 2 ψ ( x ) + V ( x ) ψ ( x ) = E ψ ( x )
Time-Independent 1 D Schrödinger equation
stationary assumption : ψ ( t ) = e − i E t / ℏ ∣ ψ ( 0 ) ⟩ \psi(t)=e^{-iEt/\hbar}\ket {\psi(0)} ψ ( t ) = e − i Et /ℏ ∣ ψ ( 0 ) ⟩
− ℏ 2 2 m ∇ 2 ψ ( x ) + V ( x ) ψ ( x ) = E ψ ( x ) → H ψ ( x ) = E ψ ( x ) -\frac{\hbar^2}{2m}\nabla^2\psi(x) + V(x)\psi(x) = E\psi(x)
\to
H\psi(x) = E\psi(x)
− 2 m ℏ 2 ∇ 2 ψ ( x ) + V ( x ) ψ ( x ) = E ψ ( x ) → H ψ ( x ) = E ψ ( x )
for special form
ψ ′ ′ ( x ) + 2 m ℏ 2 ( E − V ( x ) ) ψ ( x ) = 0 \psi''(x) + \frac{2m}{\hbar^2}\left(E-V(x)\right)\psi(x) = 0
ψ ′′ ( x ) + ℏ 2 2 m ( E − V ( x ) ) ψ ( x ) = 0
given V , m , E V,m,E V , m , E we want to know ψ \psi ψ
Numerov algorithm
( 1 + ( Δ x ) 2 12 k n + 1 ) ψ n + 1 = 2 ( 1 − 5 ( Δ x ) 2 12 k n ) ψ n − ( 1 + ( Δ x ) 2 12 k n − 1 ) ψ n − 1 + O [ ( Δ x ) 6 ] k = 2 m ℏ 2 ( E − V ( x ) ) \begin{aligned}
\left(1+\frac{(\Delta x)^2}{12}k_{n+1}\right)\psi_{n+1} &=
2\left(1-\frac{5(\Delta x)^2}{12}k_n\right)\psi_n - \left(1+\frac{(\Delta x)^2}{12}k_{n-1}\right)\psi_{n-1} + O[(\Delta x)^6] \\ k &= \frac{2m}{\hbar^2}(E-V(x))
\end{aligned}
( 1 + 12 ( Δ x ) 2 k n + 1 ) ψ n + 1 k = 2 ( 1 − 12 5 ( Δ x ) 2 k n ) ψ n − ( 1 + 12 ( Δ x ) 2 k n − 1 ) ψ n − 1 + O [( Δ x ) 6 ] = ℏ 2 2 m ( E − V ( x ))
initial problem for symmetry V ( x ) = V ( − x ) V(x)=V(-x) V ( x ) = V ( − x )
ψ ( x ) = − ψ ( x ) \psi(x)=-\psi(x) ψ ( x ) = − ψ ( x ) : half integer mesh with ψ ( − 1 2 Δ x ) = ψ ( 1 2 Δ x ) = 1 \psi(-\frac{1}{2}\Delta x) = \psi(\frac{1}{2}\Delta x) = 1 ψ ( − 2 1 Δ x ) = ψ ( 2 1 Δ x ) = 1
ψ ( − x ) = − ψ ( x ) \psi(-x) = -\psi(x) ψ ( − x ) = − ψ ( x ) : integer mesh with ψ ( 0 ) = 0 ψ ( Δ x ) = 1 \psi(0) = 0 \quad \psi(\Delta x) = 1 ψ ( 0 ) = 0 ψ ( Δ x ) = 1
general V ( x ) = 0 V(x)=0 V ( x ) = 0 for ∣ x ∣ ≥ a |x|\ge a ∣ x ∣ ≥ a
ψ ( − a − Δ x ) = exp ( − Δ x − 2 m E / ℏ ) ψ ( − a ) = 1 \psi(-a-\Delta x) = \text{exp}(-\Delta x\sqrt {-2mE}/\hbar)\quad \psi(-a)=1 ψ ( − a − Δ x ) = exp ( − Δ x − 2 m E /ℏ ) ψ ( − a ) = 1
1D scattering problem
a particle approaching the potential barrier V ( x ) { ≠ 0 x ∈ [ 0 , a ] = 0 others V(x)\begin{cases}
\neq 0 & x\in[0,a]\\
= 0 & \text{others}
\end{cases} V ( x ) { = 0 = 0 x ∈ [ 0 , a ] others from the left
Bound state
particles are confined due to potential V ( x ) { < 0 x ∈ [ 0 , a ] = 0 others V(x)\begin{cases}<0&x\in[0,a]\\= 0&\text{others}\end{cases} V ( x ) { < 0 = 0 x ∈ [ 0 , a ] others
Time-independent nD Schrödinger equation
Factorization techniques :
along coordinate axes : ψ ( r ⃗ ) = ψ x ( x ) ψ y ( y ) ψ z ( z ) \psi(\vec r) =\psi_x(x)\psi_y(y)\psi_z(z) ψ ( r ) = ψ x ( x ) ψ y ( y ) ψ z ( z )
spherical symmetry : ψ ( r ⃗ ) = u ( r ) r Y l m ( θ , ϕ ) l ∈ N 0 , m ∈ Z , ∣ m ∣ ≤ l \psi(\vec r) = \frac{u(r)}{r}Y_{lm}(\theta,\phi)\quad l\in\N_0,m\in\Z,|m|\le l ψ ( r ) = r u ( r ) Y l m ( θ , ϕ ) l ∈ N 0 , m ∈ Z , ∣ m ∣ ≤ l
apply to the Schrodinger equation : ( − ℏ 2 2 μ ∇ 2 + ℏ 2 l ( l + 1 ) 2 μ r 2 + V ( r ) ) u ( r ) = E u ( r ) \left(-\frac{\hbar^2}{2\mu}\nabla^2+\frac{\hbar^2l(l+1)}{2\mu r^2}+V(r)\right)u(r) = Eu(r) ( − 2 μ ℏ 2 ∇ 2 + 2 μ r 2 ℏ 2 l ( l + 1 ) + V ( r ) ) u ( r ) = E u ( r )
Notation
l l l : azimuthal quantum number, magnitude of the orbital angular momentum
m m m : magnetic quantum number, projection of the angular momentum vector along a chosen axis
μ \mu μ : mass
Solving methods :
finite difference
Example : three dimensional Schrodinger
∇ 2 ψ ( r ⃗ ) + 2 m [ E − V ( r ⃗ ) ] ψ ( r ⃗ ) = 0 ⇓ 0 = 1 ( Δ x ) 2 [ ψ ( x n + 1 , y n , z n ) + ψ ( x n − 1 , y n , z n ) + ψ ( x n , y n + 1 , z n ) + ψ ( x n , y n − 1 , z n ) + ψ ( x n , y n , z n + 1 ) + ψ ( x n , y n , z n − 1 ) ] + { 2 m [ E − V ( r ⃗ ) ] − 6 ( Δ x ) 2 } ψ ( x n , y n , z n ) \nabla^2\psi(\vec r) + 2m[E-V(\vec r)]\psi(\vec r) = 0
\\
\Downarrow
\\
\begin{aligned}
0 = \frac{1}{(\Delta x)^2}&[\psi(x_{n+1},y_n,z_n)+\psi(x_{n-1},y_n,z_n)\\
&+\psi(x_n,y_{n+1},z_n)+\psi(x_n,y_{n-1},z_n)\\
&+\psi(x_n,y_n,z_{n+1})+\psi(x_n,y_n,z_{n-1})
]\\
&+\left\{
2m[E-V(\vec r)]-\frac{6}{(\Delta x)^2}
\right\}\psi(x_n,y_n,z_n)
\end{aligned}
∇ 2 ψ ( r ) + 2 m [ E − V ( r )] ψ ( r ) = 0 ⇓ 0 = ( Δ x ) 2 1 [ ψ ( x n + 1 , y n , z n ) + ψ ( x n − 1 , y n , z n ) + ψ ( x n , y n + 1 , z n ) + ψ ( x n , y n − 1 , z n ) + ψ ( x n , y n , z n + 1 ) + ψ ( x n , y n , z n − 1 )] + { 2 m [ E − V ( r )] − ( Δ x ) 2 6 } ψ ( x n , y n , z n )
variational approaches : ∣ ϕ ⟩ = ∑ i N a i ∣ u i ⟩ \ket \phi = \sum_i^N a_i\ket {u_i} ∣ ϕ ⟩ = ∑ i N a i ∣ u i ⟩
⟨ ϕ ⟩ E ∗ = ⟨ ϕ ∣ H ^ ∣ ϕ ⟩ → ⟨ u i ∣ ∣ u j ⟩ ⏟ S i j E ∗ = ⟨ u i ∣ H ^ ∣ u j ⟩ ⏟ H i j → U ⊤ H U b ^ = E ∗ b ⃗ \braket{\phi}E^* = \bra \phi \hat H \ket \phi \to \underbrace{\bra{u_i}\ket{u_j}}_{S_{ij}} E^* = \underbrace{\bra{u_i}\hat H\ket{u_j}}_{H_{ij}}
\to U^\top HU\hat b = E^*\vec b
⟨ ϕ ⟩ E ∗ = ⟨ ϕ ∣ H ^ ∣ ϕ ⟩ → S ij ⟨ u i ∣ ∣ u j ⟩ E ∗ = H ij ⟨ u i ∣ H ^ ∣ u j ⟩ → U ⊤ H U b ^ = E ∗ b
more basis more accurate
Notation
∣ u i ⟩ \ket{u_i} ∣ u i ⟩ basis
a i a_i a i : basis coefficient, a ⃗ = [ a 1 , ⋯ , a n ] ⊤ \vec a = \begin{bmatrix}a_1,\cdots,a_n\end{bmatrix}^\top a = [ a 1 , ⋯ , a n ] ⊤
U U U : nomalization matrix for S S S that U ⊤ S U = I U^\top SU = I U ⊤ S U = I
b ⃗ \vec b b : eigen vector, b ⃗ = U − 1 a ⃗ \vec b = U^{-1}\vec a b = U − 1 a
finite element method
irregular geometries
higher accuracy
Time dependent Schrödinger Equation
i ∂ t ∣ ψ ⟩ = H ^ ∣ ψ ⟩ i \partial_t \ket \psi = \hat H\ket \psi
i ∂ t ∣ ψ ⟩ = H ^ ∣ ψ ⟩
Spectral method :∣ ψ t ⟩ = ∑ n c n e − i ε n ( t − t 0 ) / ℏ ∣ ϕ n ⟩ \ket{\psi_t} = \sum_n c_ne^{-i\varepsilon_n(t-t_0)/\hbar}\ket {\phi_n} ∣ ψ t ⟩ = ∑ n c n e − i ε n ( t − t 0 ) /ℏ ∣ ϕ n ⟩
Algorithm
eigen value ε n \varepsilon_n ε n and eigen vector ∣ ϕ n ⟩ \ket {\phi_n} ∣ ϕ n ⟩ for stationary problem H ^ ∣ ϕ ⟩ = E ∣ ϕ ⟩ \hat H\ket \phi = E\ket \phi H ^ ∣ ϕ ⟩ = E ∣ ϕ ⟩
represent initial wave function in eigen vectors ∣ ψ 0 ⟩ = ∑ n c n ∣ ϕ n ⟩ \ket {\psi_0} = \sum_n c_n \ket{\phi_n} ∣ ψ 0 ⟩ = ∑ n c n ∣ ϕ n ⟩
the evolution state ∣ ψ t ⟩ = ∑ n c n e − i ε n ( t − t 0 ) / ℏ ∣ ϕ n ⟩ \ket{\psi_t} = \sum_n c_ne^{-i\varepsilon_n(t-t_0)/\hbar}\ket {\phi_n} ∣ ψ t ⟩ = ∑ n c n e − i ε n ( t − t 0 ) /ℏ ∣ ϕ n ⟩
limitations :
the diagonalization of H H H is complex, so this method is only useful for small problems
Notation
∣ ϕ n ⟩ \ket {\phi_n} ∣ ϕ n ⟩ : eigenvector of H ∣ ϕ ⟩ = E ∣ ϕ ⟩ H |ϕ⟩ = E |ϕ⟩ H ∣ ϕ ⟩ = E ∣ ϕ ⟩ , ∣ ψ 0 ⟩ = ∑ c n ∣ ϕ n ⟩ \ket {\psi_0} = \sum c_n\ket{\phi_n} ∣ ψ 0 ⟩ = ∑ c n ∣ ϕ n ⟩
ε n \varepsilon_n ε n : eigenvalue of H ∣ ϕ ⟩ = E ∣ ϕ ⟩ H |ϕ⟩ = E |ϕ⟩ H ∣ ϕ ⟩ = E ∣ ϕ ⟩
Direct numerical integration : ( 1 + i Δ t 2 ℏ H ) ψ ( r ⃗ , t + Δ t ) = ( 1 − i Δ t 2 ℏ H ) ψ ( r ⃗ , t ) \left(\mathbb 1+ \frac{i\Delta t}{2\hbar}H\right)\psi(\vec r, t+\Delta t) = \left(\mathbb 1 - \frac{i\Delta t}{2\hbar}H\right)\psi(\vec r, t) ( 1 + 2ℏ i Δ t H ) ψ ( r , t + Δ t ) = ( 1 − 2ℏ i Δ t H ) ψ ( r , t )
forward euler : ∣ ψ ( t n + 1 ) ⟩ = ∣ ψ ( t n ) ⟩ − i Δ t ℏ H ^ ∣ ψ ( t n ) ⟩ \ket {\psi(t_{n+1})}=\ket {\psi(t_n)} - \frac{i\Delta t}{\hbar}\hat H\ket{\psi(t_n)} ∣ ψ ( t n + 1 ) ⟩ = ∣ ψ ( t n ) ⟩ − ℏ i Δ t H ^ ∣ ψ ( t n ) ⟩
numerically unstable
violet conservation of ⟨ ϕ ⟩ \braket \phi ⟨ ϕ ⟩
implicit method : ( 1 + i Δ t 2 ℏ H ) ψ ( r ⃗ , t + Δ t ) = ( 1 − i Δ t 2 ℏ H ) ψ ( r ⃗ , t ) \left(\mathbb 1+ \frac{i\Delta t}{2\hbar}H\right)\psi(\vec r, t+\Delta t) = \left(\mathbb 1 - \frac{i\Delta t}{2\hbar}H\right)\psi(\vec r, t) ( 1 + 2ℏ i Δ t H ) ψ ( r , t + Δ t ) = ( 1 − 2ℏ i Δ t H ) ψ ( r , t )
H H H is sparse matrix, using iterative solver (e.g. biconjugate gradient)
Split-operator method : ψ ( q ⃗ ) ⇌ F − 1 F ψ ( p ⃗ ) ⇒ H ^ = T ^ ( p ⃗ ) + V ^ ( q ⃗ ) \psi(\vec q) \xrightleftharpoons[\mathcal F^{-1}]{\mathcal F}\psi(\vec p)\Rightarrow \hat H =\textcolor{cyan}{\hat T(\vec p)}+\textcolor{magenta}{\hat V(\vec q)} ψ ( q ) F F − 1 ψ ( p ) ⇒ H ^ = T ^ ( p ) + V ^ ( q )
e − i t H ^ / ℏ = e − i Δ t V ^ / 2 ℏ [ e − i Δ t T ^ / ℏ e − i Δ t V ^ / ℏ ] N − 1 e − i Δ t T ^ / ℏ e − i Δ t V ^ / 2 ℏ e^{-i t\hat H /\hbar} = \textcolor{magenta}{e^{-i\Delta t\hat V/2\hbar}}\left[\textcolor{cyan}{e^{-i\Delta t\hat T/\hbar}}\textcolor{magenta}{e^{-i\Delta t\hat V/\hbar}} \right]^{N-1}\textcolor{cyan}{e^{-i\Delta t\hat T/\hbar}}\textcolor{magenta}{e^{-i\Delta t\hat V/2\hbar}}
e − i t H ^ /ℏ = e − i Δ t V ^ /2ℏ [ e − i Δ t T ^ /ℏ e − i Δ t V ^ /ℏ ] N − 1 e − i Δ t T ^ /ℏ e − i Δ t V ^ /2ℏ
Algorithm
ψ ( q ⃗ ) ← e − i Δ t V ( q ⃗ ) / 2 ℏ ψ 0 ( q ⃗ ) \textcolor{magenta}{\psi(\vec q)\gets e^{-i\Delta tV(\vec q)/2\hbar}\psi_0(\vec q)} ψ ( q ) ← e − i Δ t V ( q ) /2ℏ ψ 0 ( q )
loop N-1 timesteps
ψ ( p ⃗ ) ← F ψ ( q ⃗ ) \textcolor{cyan}{\psi(\vec p)} \overset{ \mathcal F}{\gets} \textcolor{magenta}{\psi(\vec q)} ψ ( p ) ← F ψ ( q )
ψ ( p ⃗ ) ← e − i Δ t ℏ ∥ p ⃗ ∥ 2 / 2 m ψ ( p ⃗ ) \textcolor{cyan}{\psi(\vec p) \gets e^{-i\Delta t \hbar\Vert\vec p\Vert^2/2m}\psi(\vec p)} ψ ( p ) ← e − i Δ t ℏ∥ p ∥ 2 /2 m ψ ( p )
ψ ( q ⃗ ) ← F − 1 ψ ( p ⃗ ) \textcolor{magenta}{\psi(\vec q)} \overset{\mathcal F^{-1}}\gets \textcolor{cyan}{\psi(\vec p)} ψ ( q ) ← F − 1 ψ ( p )
ψ ( q ⃗ ) ← e − i Δ t V ( q ⃗ ) / ℏ ψ ( q ⃗ ) \textcolor{magenta}{\psi(\vec q)\gets e^{-i\Delta t V(\vec q)/\hbar}\psi(\vec q)} ψ ( q ) ← e − i Δ t V ( q ) /ℏ ψ ( q )
ψ ( p ⃗ ) ← F ψ ( q ⃗ ) \textcolor{cyan}{\psi(\vec p)} \overset{\mathcal F}{\gets}\textcolor{magenta}{\psi(\vec q)} ψ ( p ) ← F ψ ( q )
ψ ( p ⃗ ) ← e − i Δ t ℏ ∥ p ⃗ ∥ 2 / 2 m ψ ( p ⃗ ) \textcolor{cyan}{\psi(\vec p) \gets e^{-i\Delta t \hbar\Vert\vec p\Vert^2/2m}\psi(\vec p)} ψ ( p ) ← e − i Δ t ℏ∥ p ∥ 2 /2 m ψ ( p )
ψ ( q ⃗ ) ← F − 1 ψ ( p ⃗ ) \textcolor{magenta}{\psi(\vec q)} \overset{\mathcal F^{-1}}{\gets} \textcolor{cyan}{\psi(\vec p)} ψ ( q ) ← F − 1 ψ ( p )
ψ ( q ⃗ ) ← e − i Δ t V ( q ⃗ ) / 2 ℏ \textcolor{magenta}{\psi(\vec q)\gets e^{-i\Delta t V(\vec q)/2\hbar}} ψ ( q ) ← e − i Δ t V ( q ) /2ℏ
Notation
p ⃗ \vec p p : momentum in hamilton expression
q ⃗ \vec q q : position in hamilton expression
T ^ \hat T T ^ : kinetic operator , T ^ = ( p ⃗ ) ^ 2 2 m = − i ℏ 2 2 m ∇ 2 \hat T = \frac{\hat{(\vec p)}^2}{2m} = \frac{-i\hbar ^2}{2m}\nabla^2 T ^ = 2 m ( p ) ^ 2 = 2 m − i ℏ 2 ∇ 2
V ^ \hat V V ^ : potential operator , V ^ = V \hat V = V V ^ = V
F \mathcal F F : fourier operator , F ψ ( q ⃗ ) = ( 1 2 π ) d ∫ − ∞ + ∞ ψ ( q ⃗ ) e − i p ⃗ ⋅ q ⃗ d q ⃗ \mathcal F \psi(\vec q) = \left(\frac{1}{\sqrt {2\pi}}\right)^d\int_{-\infin}^{+\infin}\psi(\vec q)e^{-i\vec p\cdot \vec q}\text d\vec q F ψ ( q ) = ( 2 π 1 ) d ∫ − ∞ + ∞ ψ ( q ) e − i p ⋅ q d q
F − 1 \mathcal F^{-1} F − 1 : inverse fourier operator , F − 1 ψ ( p ⃗ ) = ( 1 2 π ) d ∫ − ∞ + ∞ ψ ( p ⃗ ) e − i p ⃗ ⋅ q ⃗ d p ⃗ \mathcal F^{-1} \psi(\vec p) = \left(\frac{1}{\sqrt {2\pi}}\right)^d\int_{-\infin}^{+\infin}\psi(\vec p)e^{-i\vec p\cdot \vec q}\text d\vec p F − 1 ψ ( p ) = ( 2 π 1 ) d ∫ − ∞ + ∞ ψ ( p ) e − i p ⋅ q d p
Quantum n-body problem
Hilbert space for n particles: H N = H ⊗ N \mathcal H^N = \mathcal H^{\otimes N} H N = H ⊗ N
Indistinguishable Particles
Bosons and Fermions :
fermions : ψ ( r ⃗ 1 , r ⃗ 2 ) = − ψ ( r ⃗ 2 , r ⃗ 1 ) \psi(\vec r_1,\vec r_2) = -\psi(\vec r_2, \vec r_1) ψ ( r 1 , r 2 ) = − ψ ( r 2 , r 1 )
Ψ A = N A ∑ p sign ( p ) ψ ( r ⃗ p ( 1 ) , ⋯ , r ⃗ p ( N ) ) \Psi^A = \mathcal N_A\sum_p\text{sign}(p)\psi(\vec r_{p(1)},\cdots,\vec r_{p(N)})
Ψ A = N A p ∑ sign ( p ) ψ ( r p ( 1 ) , ⋯ , r p ( N ) )
Notation
Ψ A \Psi^A Ψ A : n particle fermions wave function
N A \mathcal N_A N A : normalization factor
p p p : permutation
Pauli exclusion principle : Ψ A ( r ⃗ 1 , r ⃗ 2 ) = ψ ( r ⃗ 1 , r ⃗ 2 ) − ψ ( r ⃗ 2 , r ⃗ 1 ) ≠ 0 \Psi^A(\vec r_1,\vec r_2) = \psi(\vec r_1,\vec r_2)-\psi(\vec r_2,\vec r_1) \neq 0 Ψ A ( r 1 , r 2 ) = ψ ( r 1 , r 2 ) − ψ ( r 2 , r 1 ) = 0
spinful, generalized coordinate r = ( r ⃗ , σ ) r=(\vec r, \sigma) r = ( r , σ )
bosons : ψ ( r ⃗ 1 , r ⃗ 2 ) = ψ ( r ⃗ 2 , r ⃗ 1 ) \psi(\vec r_1, \vec r_2) = \psi(\vec r_2, \vec r_1) ψ ( r 1 , r 2 ) = ψ ( r 2 , r 1 )
Ψ S = N S ∑ p ψ ( r ⃗ p ( 1 ) , ⋯ , r ⃗ p ( N ) ) \Psi^{S} = \mathcal N_S\sum_p \psi(\vec r_{p(1)},\cdots,\vec r_{p(N)})
Ψ S = N S p ∑ ψ ( r p ( 1 ) , ⋯ , r p ( N ) )
Notation
Ψ S \Psi^S Ψ S : n particle bosons wave function
N S \mathcal N_S N S : normalization factor
Fock space : F = ⨁ N = 0 ∞ S ± H N \mathcal F = \bigoplus_{N=0}^\infin \mathcal S_{\pm}\mathcal H^N F = ⨁ N = 0 ∞ S ± H N
possible particle configurations for a given type of particle
F = F 0 ⏟ 0 particles ⊕ F 1 ⏟ 1 particles ⊕ ⋯ \mathcal F = \underbrace{\mathcal F_0}_{\text{0 particles}} \oplus \underbrace{\mathcal F_1}_{\text{1 particles}} \oplus \cdots F = 0 particles F 0 ⊕ 1 particles F 1 ⊕ ⋯
Notation
⊕ \oplus ⊕ : direct sum, e.g. A ⊕ B = [ A 0 0 B ] \textbf A \oplus \textbf B = \begin{bmatrix}\textbf A&\textbf 0\\\textbf 0 &\textbf B\end{bmatrix} A ⊕ B = [ A 0 0 B ]
S ± S_\pm S ± : symmetrization for bosons S + = N S ∑ p \mathcal S_+ =\mathcal N_S\sum_p S + = N S ∑ p / antisymmetrization operator for fermions S − = N A ∑ p sgn(p) \mathcal S_- = \mathcal N_A\sum_p\text{sgn(p)} S − = N A ∑ p sgn(p)
Example
Bosons
Spinless Fermions
Spinful Fermions
Spin-1 2 \frac{1}{2} 2 1
Fock space dimension
∞ \infin ∞ (bosons can take same position)
2 N 2^N 2 N
4 N 4^N 4 N
2 N 2^N 2 N
Slater determinant :Ψ ( r 1 , ⋯ , r N ) = 1 N ! ∣ ϕ 1 ( r 1 ) ⋯ ϕ N ( r 1 ) ⋮ ⋱ ⋮ ϕ r ( r N ) ⋯ ϕ N ( r N ) ∣
\Psi(r_1,\cdots,r_N) = \frac{1}{\sqrt {N!}}\left|\begin{matrix}
\phi_1(r_1)&\cdots&\phi_N(r_1)\\
\vdots & \ddots&\vdots\\
\phi_r(r_N)&\cdots&\phi_N(r_N)
\end{matrix}\right|
Ψ ( r 1 , ⋯ , r N ) = N ! 1 ϕ 1 ( r 1 ) ⋮ ϕ r ( r N ) ⋯ ⋱ ⋯ ϕ N ( r 1 ) ⋮ ϕ N ( r N )
anti-symmetrized and normalized N N N single particle wave function product
Notation
ϕ i ( r j ) \phi_i(r_j) ϕ i ( r j ) : wave function of fermion i i i at position r j r_j r j
Creation and annihilation operators
a ^ \hat a a ^ annihilation operator : remove particle a ^ i ∣ ϕ j ⟩ = δ i j ∣ 0 ⟩ \hat a_i\ket {\phi_j} = \delta_{ij}\ket {0} a ^ i ∣ ϕ j ⟩ = δ ij ∣ 0 ⟩
a ^ † \hat a^\dagger a ^ † creation operator : add particle ∣ ϕ i ⟩ = a ^ i † ∣ 0 ⟩ \ket{\phi_i} = \hat a_i^\dagger \ket {0} ∣ ϕ i ⟩ = a ^ i † ∣ 0 ⟩
Notation
∣ 0 ⟩ \ket {0} ∣ 0 ⟩ : vacuum state with no particles, ∣ 0 ⟩ = [ 0 0 ] \ket {0} = \begin{bmatrix}0\\0\end{bmatrix} ∣ 0 ⟩ = [ 0 0 ]
[ ⋅ , ⋅ ] [\cdot,\cdot] [ ⋅ , ⋅ ] : commute, [ A , B ] = A B − B A [A,B]=AB-BA [ A , B ] = A B − B A
{ ⋅ , ⋅ } \{\cdot,\cdot\} { ⋅ , ⋅ } : anti-commute, { A , B } = A B + B A \{A,B\}=AB+BA { A , B } = A B + B A
Bosons : commute
a ^ i ∣ n i ⟩ = n i ∣ n i − 1 ⟩ a ^ i † ∣ n i ⟩ = n i + 1 ∣ n i + 1 ⟩ \hat a_i\ket{n_i}=\sqrt{n_i}\ket{n_i-1} \quad \hat a_i^\dagger \ket {n_i} = \sqrt {n_i+1}\ket{n_i+1} a ^ i ∣ n i ⟩ = n i ∣ n i − 1 ⟩ a ^ i † ∣ n i ⟩ = n i + 1 ∣ n i + 1 ⟩
a ^ i † a ^ i = n i \hat a_i^\dagger\hat a_i = n_i a ^ i † a ^ i = n i
[ a ^ i , a ^ j † ] = δ i j [ a ^ i , a ^ j ] = [ a ^ i † , a ^ j † ] = 0 [\hat a_i, \hat a_j^\dagger] = \delta _{ij}\quad [\hat a_i, \hat a_j] = [\hat a_i^\dagger, \hat a_j^\dagger] = 0 [ a ^ i , a ^ j † ] = δ ij [ a ^ i , a ^ j ] = [ a ^ i † , a ^ j † ] = 0
0 ↚ a ^ ∣ 0 ⟩ ⇌ a ^ a ^ † ∣ 1 ⟩ ⇌ a ^ a ^ † ∣ 2 ⟩ ⋯ 0\underset{\hat a}{\not\leftarrow}\ket 0 \xrightleftharpoons[\hat a]{\hat a^\dagger}\ket 1\xrightleftharpoons[\hat a]{\hat a^\dagger}\ket 2\cdots 0 a ^ ← ∣ 0 ⟩ a ^ † a ^ ∣ 1 ⟩ a ^ † a ^ ∣ 2 ⟩ ⋯
Fermions : anti-commute
c ^ u i ∣ u i , u j , ⋯ ⟩ = ∣ u j , ⋯ ⟩ c ^ u i ∣ u j , ⋯ ⟩ = ∣ u i , u j , ⋯ ⟩ \hat c_{u_i}\ket{u_i,u_j,\cdots}=\ket{u_j,\cdots} \quad \hat c_{u_i}\ket{u_j,\cdots} = \ket{u_i,u_j,\cdots} c ^ u i ∣ u i , u j , ⋯ ⟩ = ∣ u j , ⋯ ⟩ c ^ u i ∣ u j , ⋯ ⟩ = ∣ u i , u j , ⋯ ⟩
c ^ i † c ^ i = n ^ i \hat c_i^\dagger\hat c_i =\hat n_i c ^ i † c ^ i = n ^ i
n i = 0 n_i = 0 n i = 0 : c ^ i † c ^ i ∣ u j , ⋯ ⟩ = 0 \hat c_i^\dagger\hat c_i\ket{u_j,\cdots} = 0 c ^ i † c ^ i ∣ u j , ⋯ ⟩ = 0
n i = 1 n_i=1 n i = 1 : c ^ u i † c ^ u i ∣ u i , u j , ⋯ ⟩ = ∣ u i , u j , ⋯ ⟩ \hat c_{u_i}^\dagger\hat c_{u_i}\ket{u_i,u_j,\cdots}=\ket{u_i,u_j,\cdots} c ^ u i † c ^ u i ∣ u i , u j , ⋯ ⟩ = ∣ u i , u j , ⋯ ⟩
{ c ^ i , c ^ j † } = δ i j { c ^ i , c ^ j } = { c ^ i † , c ^ j † } = 0 \{\hat c_i, \hat c_j^\dagger\} = \delta_{ij}\quad \{\hat c_i, \hat c_j\} = \{\hat c_i^\dagger, \hat c_j^\dagger\} = 0 { c ^ i , c ^ j † } = δ ij { c ^ i , c ^ j } = { c ^ i † , c ^ j † } = 0
0 ↚ c ^ u i † ∣ 0 ⟩ ⇌ c ^ u i c ^ u i † ∣ u i ⟩ ↛ c ^ u i † 0 0 \underset{\hat c^\dagger_{u_i}}{\not \leftarrow}\ket 0 \xrightleftharpoons[\hat c_{u_i}]{\hat c^\dagger_{u_i}}\ket {u_i}\overset{\hat c^\dagger_{u_i}}{\not\rightarrow} 0 0 c ^ u i † ← ∣ 0 ⟩ c ^ u i † c ^ u i ∣ u i ⟩ → c ^ u i † 0
Quantum Spin Model
(TFIM)Transverse field Ising model
H ^ = ∑ < i j > J i j S ^ i z S ^ j z − ∑ i h i 2 S ^ i x \hat H = \sum_{<ij>} J_{ij} \hat S_i^z\hat S_j^z - \sum_{i} \frac{h_i}{2}\hat S_i^x
H ^ = < ij > ∑ J ij S ^ i z S ^ j z − i ∑ 2 h i S ^ i x
S ^ i z S ^ j z = I ⊗ ⋯ ⊗ S ^ z ⏟ n = i ⊗ ⋯ ⊗ S ^ z ⏟ n = j ⊗ ⋯ ⊗ 1 I \hat S_i^z\hat S_{j}^z = I\otimes\cdots \otimes \underbrace{\hat S^z}_{n=i}\otimes\cdots\otimes \underbrace{\hat S^z}_{n=j}\otimes\cdots\otimes \mathbb 1I
S ^ i z S ^ j z = I ⊗ ⋯ ⊗ n = i S ^ z ⊗ ⋯ ⊗ n = j S ^ z ⊗ ⋯ ⊗ 1 I
quantum phase transition between a spontaneously symmetry-broken and a disordered phase
extension of the classical Ising model by adding a magnetic field in the x x x direction
Notation
< i j > <ij> < ij > : connection between particle i i i and particle j j j
J i j J_{ij} J ij : interacting constant between particle i i i and particle j j j
h i h_i h i : external magenatic field on particle i i i
S ^ x \hat S^x S ^ x : spin operator in x x x direction, S ^ x = 1 2 ℏ σ x = 1 2 ℏ [ 0 1 1 0 ] \hat S^x = \frac{1}{2}\hbar\sigma_x = \frac{1}{2}\hbar\begin{bmatrix}0&1\\1&0\end{bmatrix} S ^ x = 2 1 ℏ σ x = 2 1 ℏ [ 0 1 1 0 ]
S ^ z \hat S^z S ^ z : spin operator in z z z direction, S ^ z = 1 2 ℏ σ z = 1 2 ℏ [ 1 0 0 − 1 ] \hat S^z = \frac{1}{2}\hbar \sigma_z = \frac{1}{2}\hbar\begin{bmatrix}1&0\\0&-1\end{bmatrix} S ^ z = 2 1 ℏ σ z = 2 1 ℏ [ 1 0 0 − 1 ]
Heisenberg model
H ^ = ∑ < i j > J i j S ⃗ i ^ ⋅ S ⃗ j ^ = ∑ < i j > J i j ( S ^ i x S ^ j x + S ^ i y S ^ j y + S ^ i z S ^ z j ) = ∑ < i j > J i j [ 1 2 ( S ^ i + S ^ j − + S ^ i − S ^ j + ) + S ^ i z S ^ j z ] \begin{aligned}
\hat H &= \sum_{<ij>} J_{ij}\hat{\vec S_i}\cdot \hat{\vec S_j} = \sum_{<ij>}J_{ij}\left(\hat S^x_i \hat S^x_j +\hat S^y_i\hat S^y_j+\hat S^z_i\hat S_z^j\right)
\\
&= \sum_{<ij>}J_{ij}\left[
\frac{1}{2}
\left(\hat S_i^+\hat S_j^- +
\hat S_i^- \hat S_j^+\right) + \hat S_i^z \hat S_j^z
\right]
\end{aligned}
H ^ = < ij > ∑ J ij S i ^ ⋅ S j ^ = < ij > ∑ J ij ( S ^ i x S ^ j x + S ^ i y S ^ j y + S ^ i z S ^ z j ) = < ij > ∑ J ij [ 2 1 ( S ^ i + S ^ j − + S ^ i − S ^ j + ) + S ^ i z S ^ j z ]
Notation
S ^ ± \hat S^\pm S ^ ± : raising/lowering operator , S ^ ± = ℏ σ ± = ℏ ( σ x ± i σ y ) \hat S^\pm = \hbar \sigma^\pm =\hbar(\sigma_x\pm i \sigma_y) S ^ ± = ℏ σ ± = ℏ ( σ x ± i σ y )
S ^ + S ^ + ∣ ↓ ⟩ = S ^ + ∣ ↑ ⟩ = ∣ null ⟩ ∣ ↑ ⟩ = [ 1 0 ] ∣ ↓ ⟩ = [ 0 1 ] ∣ null ⟩ = [ 0 0 ] \hat S^+ \hat S^+ \ket \downarrow = \hat S^+\ket \uparrow = \ket {\text{null}} \quad \ket{\uparrow} = \begin{bmatrix}1\\0\end{bmatrix}\qquad \ket{\downarrow} = \begin{bmatrix}0\\1\end{bmatrix}\qquad\ket{\text{null}} = \begin{bmatrix}0\\0\end{bmatrix} S ^ + S ^ + ∣ ↓ ⟩ = S ^ + ∣ ↑ ⟩ = ∣ null ⟩ ∣ ↑ ⟩ = [ 1 0 ] ∣ ↓ ⟩ = [ 0 1 ] ∣ null ⟩ = [ 0 0 ]
( σ ± ) 2 = 0 (\sigma^\pm)^2= 0 ( σ ± ) 2 = 0 : a spin can be flipped only only once
M ^ z \hat M^z M ^ z : total magnetization , M ^ z = ∑ i S ^ i z \hat M^z=\sum_i \hat S_i^z M ^ z = ∑ i S ^ i z
conserve total magentization
Hamitonian has S U ( 2 ) SU(2) S U ( 2 ) symmetry
Example : two particles ({ ∣ ↑ ↑ ⟩ , ∣ ↑ ↓ ⟩ , ∣ ↓ ↑ ⟩ , ∣ ↓ ↓ ⟩ } \{\ket{\uparrow\uparrow}, \ket{\uparrow\downarrow},\ket {\downarrow\uparrow}, \ket{\downarrow\downarrow}\} { ∣ ↑↑ ⟩ , ∣ ↑↓ ⟩ , ∣ ↓↑ ⟩ , ∣ ↓↓ ⟩ } )
H ^ = [ 1 4 J i j 0 0 0 0 − 1 4 J i j 1 2 J i j 0 0 1 2 J i j − 1 4 J i j 0 0 0 0 1 4 J i j ] \hat H = \begin{bmatrix}\frac{1}{4}J_{ij}&0&0&0\\0&-\frac{1}{4}J_{ij}&\frac{1}{2}J_{ij}&0\\0&\frac{1}{2}J_{ij}&-\frac{1}{4}J_{ij}&0\\0&0&0&\frac{1}{4}J_{ij}\end{bmatrix} H ^ = 4 1 J ij 0 0 0 0 − 4 1 J ij 2 1 J ij 0 0 2 1 J ij − 4 1 J ij 0 0 0 0 4 1 J ij
X X Z XXZ XXZ model
H ^ = ∑ < i j > J i j ( S ^ i x S ^ j x + S ^ i y S ^ j y + Δ S ^ i z S ^ j z ) \hat H = \sum_{<ij>}J_{ij}\left(
\hat S_i^x\hat S_j^x + \hat S_i^y\hat S_j^y + \Delta\hat S_i^z\hat S_j^z
\right)
H ^ = < ij > ∑ J ij ( S ^ i x S ^ j x + S ^ i y S ^ j y + Δ S ^ i z S ^ j z )
conserve total magentization M ^ z \hat M^z M ^ z
Notation
Jordan-Wigner Transformation
mapping spin models to spinless fermions, derive from X X Z XXZ XXZ model
H ^ = 1 2 ∑ < i j > J i j ( c ^ i † c ^ j + c ^ j † c ^ i + 2 Δ n ^ i n ^ j ) \hat H = \frac{1}{2}\sum_{<ij>}J_{ij}\left(
\hat c_i^\dagger\hat c_j
+\hat c_j^\dagger\hat c_i+
2\Delta\hat n_i\hat n_j
\right)
H ^ = 2 1 < ij > ∑ J ij ( c ^ i † c ^ j + c ^ j † c ^ i + 2Δ n ^ i n ^ j )
Notation
c ^ i / c ^ i † \hat c_i/\hat c_i^\dagger c ^ i / c ^ i † : Jordan-Wigner transformation operator, c ^ i = ∏ j < i ( σ j z ) σ i + c ^ i † = ∏ j < i ( σ j z ) σ i − \hat c_i = \prod_{j<i}\left(\sigma_j^z\right)\sigma_i^+
\qquad
\hat c_i^\dagger =
\prod_{j<i}\left(\sigma_j^z\right)\sigma_i^- c ^ i = ∏ j < i ( σ j z ) σ i + c ^ i † = ∏ j < i ( σ j z ) σ i −
{ c ^ i , c ^ j † } = δ i j \{\hat c_i,\hat c_j^\dagger\}=\delta_{ij} { c ^ i , c ^ j † } = δ ij
{ c ^ i , c ^ j } = { c ^ i † , c ^ j † } = 0 \{\hat c_i, \hat c_j\}=\{\hat c_i^\dagger, \hat c_j^\dagger\}=0 { c ^ i , c ^ j } = { c ^ i † , c ^ j † } = 0
n ^ i \hat n_i n ^ i : number operator, n ^ i = c ^ i † c ^ i \hat n_i=\hat c_i^\dagger \hat c_i n ^ i = c ^ i † c ^ i
Brute-force method
[ED] Exact Diagonalization
diagonalizing the Hamiltonian matrix
full spectrum N ≈ 20 N\approx 20 N ≈ 20
Lanczos algorithm N ≈ 40 N\approx 40 N ≈ 40
Lanczos algorithm
storage complexity O ( 2 N ) \mathcal O(2^N) O ( 2 N ) compared to dense matrix eigen solvers of O ( 2 N ) 2 \mathcal O(2^N)^2 O ( 2 N ) 2
ghost state : low-lying eigen values result from round of error that r ⃗ n \vec r_n r n is not fully orthogonal
Algorithm
find the orthogonalized basis r ⃗ i \vec r_i r i using Gram-Schmidt orthogonalization
r ⃗ 0 = v ⃗ ∥ v ⃗ ∥ β m r ⃗ m = H r ⃗ m − 1 − α m − 1 r ⃗ m − 1 − β m − 1 r ⃗ m − 2 α n = r ⃗ n † H r ⃗ n β n = ∣ r ⃗ n † H r ⃗ n − 1 ∣ \begin{aligned}
\vec r_0 = \frac{\vec v}{\Vert \vec v\Vert}
\quad
\beta_m\vec r_m = H\vec r_{m-1} - \alpha_{m-1}\vec r_{m-1} - \beta_{m-1}\vec{r}_{m-2}
\end{aligned}\quad
\alpha_n =\vec r_n^\dagger H\vec r_n \quad
\beta_n = |\vec r_n^\dagger H\vec r_{n-1}|
r 0 = ∥ v ∥ v β m r m = H r m − 1 − α m − 1 r m − 1 − β m − 1 r m − 2 α n = r n † H r n β n = ∣ r n † H r n − 1 ∣
express Hamiltonian H H H in tridiagonal matrix
H M = [ α 0 β 1 ⋯ 0 0 β 1 α 1 ⋯ 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ α M − 1 β M 0 0 ⋯ β M α M ] H^M = \begin{bmatrix}
\alpha_0 & \beta_1 & \cdots & 0 & 0 \\
\beta_1 & \alpha_1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & \cdots & \alpha_{M-1}&\beta_M \\
0 & 0 & \cdots & \beta_M & \alpha_M
\end{bmatrix} H M = α 0 β 1 ⋮ 0 0 β 1 α 1 ⋮ 0 0 ⋯ ⋯ ⋱ ⋯ ⋯ 0 0 ⋮ α M − 1 β M 0 0 ⋮ β M α M
eigendecomposite the H M H^M H M
transform the eigenvectors to the original basis
for memory constraint, only store the last three r ⃗ n \vec r_n r n and recompute r ⃗ n \vec r_n r n iteratively to perform basis transformation
Spin-1 2 \frac{1}{2} 2 1 hamitonians
two possible state ∣ ↑ ⟩ \ket\uparrow ∣ ↑ ⟩ and ∣ ↓ ⟩ \ket\downarrow ∣ ↓ ⟩ bitwise operation (xor) rather than vector
S ^ i z S ^ i + 1 z \hat S_i^z\hat S_{i+1}^z S ^ i z S ^ i + 1 z : s = s ^ (s>>1)
S ^ i + S ^ i + 1 − \hat S_i^+\hat S_{i+1}^- S ^ i + S ^ i + 1 − : s = s ^ (3<<i)
Example
assume state s = 01 1 2 s=011_2 s = 01 1 2
then for heisenberg model s ~ = 01 1 2 ⊕ 01 0 2 = 01 0 2 \tilde s = 011 _2\oplus 010_2 = 010_2 s ~ = 01 1 2 ⊕ 01 0 2 = 01 0 2 where ⊕ \oplus ⊕ is bitwise xor here.
Notation
S ^ ± \hat S^\pm S ^ ± : S ^ ± = ℏ σ ± = ℏ ( σ x ± i σ y ) \hat S^\pm = \hbar \sigma^\pm =\hbar(\sigma_x\pm i \sigma_y) S ^ ± = ℏ σ ± = ℏ ( σ x ± i σ y )
symmetries
block diagonalize the Hamitonian and solve within the symmetries’ eigenspaces.
Example : Transverse Field Ising Model
parity operator : P ^ = ⨂ i σ i x \hat P = \bigotimes_i \sigma_i^x P ^ = ⨂ i σ i x , the eigen values are ± 1 \pm 1 ± 1
∣ ψ ⟩ = P ^ M ∣ ψ ⟩ \ket \psi = \hat P^M \ket \psi ∣ ψ ⟩ = P ^ M ∣ ψ ⟩ : for random state ψ \psi ψ , apply operator for M M M times we find the initial state again
eigen state becomes : ∑ i = 0 M P ^ i ∣ ψ ⟩ \sum_{i=0}^M\hat P^i\ket\psi ∑ i = 0 M P ^ i ∣ ψ ⟩
construct hamiltonian H H H from eigen state and eigen vector
Time evolution
Trotter-Suzuki decomposition : H ^ = ∑ k = 1 K h ^ k → e − i H ^ Δ t / ℏ = ∏ k = 1 K e − i h ^ k Δ t / ℏ + O ( Δ t 2 ) \hat H = \sum_{k=1}^K \hat h_k\to e^{-i\hat H\Delta t/\hbar}= \prod_{k=1}^K e^{-i\hat h_k\Delta t/\hbar}+\mathcal O(\Delta t^2) H ^ = ∑ k = 1 K h ^ k → e − i H ^ Δ t /ℏ = ∏ k = 1 K e − i h ^ k Δ t /ℏ + O ( Δ t 2 )
time-indepedent assumption : ∣ ψ ( t + Δ t ) ⟩ = e − i H ^ Δ t / ℏ ∣ ψ ( t ) ⟩ \ket{\psi(t+\Delta t)}= e^{-i\hat H\Delta t/\hbar}\ket{\psi(t)} ∣ ψ ( t + Δ t ) ⟩ = e − i H ^ Δ t /ℏ ∣ ψ ( t ) ⟩
non-commuting decomposition : H ^ = ∑ k = 1 K h ^ k [ h ^ i , h ^ j ] ≠ 0 i ≠ j \hat H = \sum_{k=1}^K\hat h_k\quad [\hat h_i,\hat h_j]\neq 0\quad i\neq j H ^ = ∑ k = 1 K h ^ k [ h ^ i , h ^ j ] = 0 i = j
second order version : e − i H ^ Δ t / ℏ = ( ∏ k = 1 K e − i h ^ k Δ t / 2 ℏ ) ( ∏ k = K 1 e − i h ^ k Δ t / 2 ℏ ) + O ( Δ t 3 ) e^{-i\hat H\Delta t/\hbar} = \left(\prod_{k=1}^K e^{-i\hat h_k\Delta t/2\hbar}\right)\left(\prod_{k=K}^1 e^{-i\hat h_k\Delta t/2\hbar}\right)+\mathcal O(\Delta t^3) e − i H ^ Δ t /ℏ = ( ∏ k = 1 K e − i h ^ k Δ t /2ℏ ) ( ∏ k = K 1 e − i h ^ k Δ t /2ℏ ) + O ( Δ t 3 )
Example : K = 2 K=2 K = 2
∣ ψ ( t + Δ t ) ⟩ = e − i h ^ 1 Δ t / 2 ℏ e − i h ^ 2 Δ t / ℏ e − i h ^ 1 Δ t / 2 ℏ ∣ ψ ⟩ \ket{\psi(t+\Delta t)} = e^{-i\hat h_1 \Delta t/2\hbar}e^{-i\hat h_2\Delta t/\hbar}e^{-i\hat h_1\Delta t/2\hbar}\ket{\psi} ∣ ψ ( t + Δ t ) ⟩ = e − i h ^ 1 Δ t /2ℏ e − i h ^ 2 Δ t /ℏ e − i h ^ 1 Δ t /2ℏ ∣ ψ ⟩
Example : Transverse Field Ising Model
H ^ = ∑ < i j > J i j σ i z σ j z ⏟ h ^ 1 − ∑ i h i σ i x ⏟ h ^ 2 \hat H = \underbrace{\sum_{<ij>}J_{ij}\sigma_i^z\sigma_j^z}_{\hat h_1} - \underbrace{\sum_i h_i\sigma_i^x}_{\hat h_2} H ^ = h ^ 1 < ij > ∑ J ij σ i z σ j z − h ^ 2 i ∑ h i σ i x
e − i h ^ 1 Δ t / ℏ = ⨂ < i j > e − i Δ t J i j s i z s j 6 z / ℏ e^{-i\hat h_1\Delta t/\hbar} = \bigotimes_{<ij>}e^{-i\Delta tJ_{ij}s_i^z s_j6z/\hbar} e − i h ^ 1 Δ t /ℏ = ⨂ < ij > e − i Δ t J ij s i z s j 6 z /ℏ
e − i h ^ 2 Δ t / ℏ = [ cos ( Δ t h i / ℏ ) i sin ( Δ t h i / ℏ ) i sin ( Δ t h i / ℏ ) cos ( Δ t h i / ℏ ) ] e^{-i\hat h_2\Delta t/\hbar} = \begin{bmatrix}\text{cos}(\Delta th_i/\hbar)&i\text{sin}(\Delta t h_i/\hbar)\\ i\text{sin}(\Delta th_i/\hbar)&\text{cos}(\Delta t h_i/\hbar)\end{bmatrix} e − i h ^ 2 Δ t /ℏ = [ cos ( Δ t h i /ℏ ) i sin ( Δ t h i /ℏ ) i sin ( Δ t h i /ℏ ) cos ( Δ t h i /ℏ ) ]
(since e A = 1 + A + A 2 2 ! + ⋯ e^A = 1 + A + \frac{A^2}{2!}+\cdots e A = 1 + A + 2 ! A 2 + ⋯ )
Notation
[ ⋅ , ⋅ ] [\cdot,\cdot] [ ⋅ , ⋅ ] : commute operator, [ A , B ] = A B − B A = 0 → A , B [A,B]=AB-BA=0\to A,B [ A , B ] = A B − B A = 0 → A , B commute
< i , j > <i,j> < i , j > : means i , j i,j i , j are neighbors
J i j J_{ij} J ij : connection between site i i i and j j j
h i h_i h i : magenatic field at site i i i
h ^ k \hat h_k h ^ k : non-commuting term
s i s_i s i : eigen value for σ i z \sigma^z_i σ i z
Imaginary-time evlotion : i t → τ it\to \tau i t → τ
time-indepedent assumption : ∣ ψ ( t ) ⟩ = e − i H ^ t / ℏ ∣ ψ ( 0 ) ⟩ → ∣ ψ ( t ) ⟩ = e − τ H ^ ∣ ψ ( 0 ) ⟩ \ket{\psi(t)}= e^{-i\hat Ht/\hbar}\ket{\psi(0)}\to \ket{\psi(t)}=e^{-\tau\hat H}\ket{\psi(0)} ∣ ψ ( t ) ⟩ = e − i H ^ t /ℏ ∣ ψ ( 0 ) ⟩ → ∣ ψ ( t ) ⟩ = e − τ H ^ ∣ ψ ( 0 ) ⟩
converges to the ground state by suppressing the amplitudes of excited states
exponentially fast in the product Δ E k τ \Delta E_k\tau Δ E k τ .
Magnus expansian : U ^ ( Δ t ) = e − i H ˉ t Δ t / ℏ + O ( Δ t 2 ) H t = H ˉ t 1 + H ˉ t 2 + ⋯ \hat U(\Delta t) = e^{-i\bar H_t\Delta t/\hbar}+\mathcal O(\Delta t^2)\quad H_t = \bar H_t^1 +\bar H_t^2+\cdots U ^ ( Δ t ) = e − i H ˉ t Δ t /ℏ + O ( Δ t 2 ) H t = H ˉ t 1 + H ˉ t 2 + ⋯
time-depdent assumption : ∣ ψ ( t ′ ) ⟩ = U ( t ′ , t ) ∣ ψ ( t ) ⟩ \ket{\psi(t')}=U(t',t)\ket{\psi(t)} ∣ ψ ( t ′ ) ⟩ = U ( t ′ , t ) ∣ ψ ( t ) ⟩
H ˉ t 1 = 1 Δ t ∫ t t + Δ t H ^ ( s ) d s \bar H^1_t = \frac{1}{\Delta t}\int_{t}^{t+\Delta t} \hat H(s)ds H ˉ t 1 = Δ t 1 ∫ t t + Δ t H ^ ( s ) d s and H t 2 = − i Δ t ∫ t t + Δ t d s ∫ t s d l [ H ^ ( s ) , H ^ ( l ) ] H^2_t = -\frac{i}{\Delta t}\int_{t}^{t+\Delta t}ds\int_{t}^sdl\left[\hat H(s),\hat H(l)\right] H t 2 = − Δ t i ∫ t t + Δ t d s ∫ t s d l [ H ^ ( s ) , H ^ ( l ) ]
Notation
U U U : evolution operator, U ^ ( t ′ , t ) = e − i ∫ t t ′ H ^ ( s ) d s / ℏ t ′ > t \hat U(t',t) = e^{-i\int_t^{t'}\hat H(s)\text ds/\hbar}\quad t'>t U ^ ( t ′ , t ) = e − i ∫ t t ′ H ^ ( s ) d s /ℏ t ′ > t
Matrix Product States
Bipartite entanglement
Reduced density matrix : ρ A = Tr B ( ∣ ψ ⟩ ⟨ ψ ∣ ) ∣ ψ ⟩ ∈ H = H A ⊗ H B \rho_A =\text{Tr}_B(\ket \psi \bra\psi)\quad \ket\psi \in\mathcal H =\mathcal H_A\otimes \mathcal H_B ρ A = Tr B ( ∣ ψ ⟩ ⟨ ψ ∣ ) ∣ ψ ⟩ ∈ H = H A ⊗ H B
Notation
⊗ \otimes ⊗ : kronecker product, e.g. [ 1 0 0 1 ] ⊗ [ 1 1 1 1 ] = [ 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 ] \begin{bmatrix}1&0\\0&1\end{bmatrix}\otimes \begin{bmatrix}1&1\\1&1\end{bmatrix}=\begin{bmatrix}1&1&0&0\\1&1&0&0\\0&0&1&1\\0&0&1&1\end{bmatrix} [ 1 0 0 1 ] ⊗ [ 1 1 1 1 ] = 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
Tr B \text{Tr}_B Tr B : partial trace over subsystem B B B , e.g. Tr B [ A 11 B 11 A 11 B 12 A 12 B 11 A 12 B 12 A 11 B 21 A 11 B 22 A 12 B 21 A 12 B 22 A 21 B 11 A 21 B 12 A 22 B 11 A 22 B 12 A 21 B 21 A 21 B 22 A 22 B 21 A 22 B 22 ] = [ ∑ i i B i i A 11 ∑ i i B i i A 12 ∑ i i B i i A 21 ∑ i i B i i A 22 ] \text{Tr}_B\begin{bmatrix}A_{11}B_{11}&A_{11}B_{12}&A_{12}B_{11}&A_{12}B_{12}\\A_{11}B_{21}&A_{11}B_{22}&A_{12}B_{21}&A_{12}B_{22}\\A_{21}B_{11}&A_{21}B_{12}&A_{22}B_{11}&A_{22}B_{12}\\A_{21}B_{21}&A_{21}B_{22}&A_{22}B_{21}&A_{22}B_{22}\end{bmatrix}=\begin{bmatrix}\sum_{ii}B_{ii}A_{11}&\sum_{ii}B_{ii}A_{12}\\\sum_{ii}B_{ii}A_{21}&\sum_{ii}B_{ii}A_{22}\end{bmatrix} Tr B A 11 B 11 A 11 B 21 A 21 B 11 A 21 B 21 A 11 B 12 A 11 B 22 A 21 B 12 A 21 B 22 A 12 B 11 A 12 B 21 A 22 B 11 A 22 B 21 A 12 B 12 A 12 B 22 A 22 B 12 A 22 B 22 = [ ∑ ii B ii A 11 ∑ ii B ii A 21 ∑ ii B ii A 12 ∑ ii B ii A 22 ]
Entanglement : S = − Tr ( ρ A log ρ A ) = − Tr ( ρ B log ρ B ) S=-\text{Tr}(\rho_A~ \text{log}~\rho_A)=-\text{Tr}(\rho_B~\text{log}~\rho_B) S = − Tr ( ρ A log ρ A ) = − Tr ( ρ B log ρ B )
using Schmidt decomposition ρ A = ∑ α λ α 2 ∣ ϕ α ⟩ A ⟨ ϕ α ∣ A → S − ∑ α λ α 2 log λ α 2 \rho_A = \sum_\alpha \lambda_\alpha^2 \ket{\phi_\alpha}_A\bra{\phi_\alpha}_A\to S-\sum_\alpha \lambda_\alpha^2\text{log}\lambda_\alpha^2 ρ A = ∑ α λ α 2 ∣ ϕ α ⟩ A ⟨ ϕ α ∣ A → S − ∑ α λ α 2 log λ α 2
product state (zero entanglement) : S = 0 ⇔ λ 1 = 1 , λ α > 1 = 0 S=0\Leftrightarrow\lambda_1 = 1,\lambda_{\alpha>1} = 0 S = 0 ⇔ λ 1 = 1 , λ α > 1 = 0
maximally entangled state : S = N 2 log d ⇔ λ i = 1 / d N / 2 S=\frac{N}{2}\text{log}d\Leftrightarrow \lambda_i = 1/\sqrt{d^{N/2}} S = 2 N log d ⇔ λ i = 1/ d N /2
random state : S ≈ N 2 log d − 1 2 S\approx \frac{N}{2}\text{log}d-\frac{1}{2} S ≈ 2 N log d − 2 1
Area law of entanglement : entanglement entropy scales as S ∝ L D − 1 S\propto L^{D-1} S ∝ L D − 1
Example : 1-D entanglement
S ∼ const S\sim\text{const} S ∼ const
Notation
S S S : entanglement entropy
d d d : Hilbert space dimension
λ \lambda λ : eigen value
N N N : number of sites
D D D : dimension of the entanglement system
L L L : linear dimension of system
Matrix Product state
[MPS] Matrix Product State : ∣ ψ ⟩ = ∑ s Tr ( A 1 s 1 ⋯ A N s N ) ∣ s 1 ⋯ s N ⟩ \ket{\psi}= \sum_s \text{Tr}(A_1^{s_1}\cdots A^{s_N}_N)\ket {s_1\cdots s_N} ∣ ψ ⟩ = ∑ s Tr ( A 1 s 1 ⋯ A N s N ) ∣ s 1 ⋯ s N ⟩
canonical form (normalization) : A = Λ Γ A=\Lambda \Gamma A = ΛΓ
Example : GHZ or ‘cat’ state
∣ G H Z ⟩ = 1 2 ( ∣ ↓ ⟩ ⊗ N + ∣ ↑ ⟩ ⊗ N ) = 1 Z ( Tr ( ( A ↑ ) N ) ∣ ↑ ⟩ ⊗ N + Tr ( ( A ↓ ) N ) ∣ ↓ ⟩ ⊗ N ) \ket {GHZ} = \frac{1}{\sqrt 2}(\ket{\downarrow}^{\otimes N}+\ket{\uparrow}^{\otimes N}) = \frac{1}{Z}\left(\text{Tr}\left((A^{\uparrow})^N\right)\ket{\uparrow}^{\otimes N}+\text{Tr}\left((A^\downarrow)^N\right)\ket{\downarrow}^{\otimes N}
\right)
∣ G H Z ⟩ = 2 1 ( ∣ ↓ ⟩ ⊗ N + ∣ ↑ ⟩ ⊗ N ) = Z 1 ( Tr ( ( A ↑ ) N ) ∣ ↑ ⟩ ⊗ N + Tr ( ( A ↓ ) N ) ∣ ↓ ⟩ ⊗ N )
where Z Z Z is a norm and A i ↓ = A ↓ = [ 1 0 0 0 ] A i ↑ = A ↑ = [ 0 0 0 1 ] A^\downarrow_i = A^\downarrow = \begin{bmatrix}1&0\\0&0\end{bmatrix}\quad A^\uparrow_i = A^\uparrow = \begin{bmatrix}0&0\\0&1\end{bmatrix} A i ↓ = A ↓ = [ 1 0 0 0 ] A i ↑ = A ↑ = [ 0 0 0 1 ]
Example : AKLT state
ground state of spin-1 Hamiltonian : H ^ = ∑ j S ⃗ j ^ ⋅ S ⃗ ^ j + 1 + 1 3 ( S ⃗ ^ j ⋅ S ⃗ ^ j + 1 ) 2 \hat H = \sum_j \hat {\vec S_j}\cdot \hat {\vec S}_{j+1} + \frac{1}{3}\left(\hat{\vec S}_j \cdot \hat{\vec S}_{j+1}\right)^2 H ^ = ∑ j S j ^ ⋅ S ^ j + 1 + 3 1 ( S ^ j ⋅ S ^ j + 1 ) 2
with matrices : A i + = A + = 2 3 σ + = [ 0 2 3 0 0 ] A i 0 = A 0 = − 1 3 σ z = [ − 1 3 0 0 1 3 ] A i − = A − = − 2 3 σ − [ 0 0 − 2 3 0 ] A^+_i = A^+=\sqrt{\frac{2}{3}}\sigma^+ = \begin{bmatrix}0&\sqrt{\frac{2}{3}}\\0&0\end{bmatrix}\quad A^0_i = A^0 =\frac{-1}{\sqrt 3}\sigma^z = \begin{bmatrix}-\frac{1}{\sqrt{3}} & 0 \\0 & \frac{1}{\sqrt 3}\end{bmatrix}\quad A^-_i = A^- = - \sqrt{\frac{2}{3}}\sigma^- \begin{bmatrix}0&0\\-\sqrt{\frac{2}{3}}&0\end{bmatrix} A i + = A + = 3 2 σ + = [ 0 0 3 2 0 ] A i 0 = A 0 = 3 − 1 σ z = [ − 3 1 0 0 3 1 ] A i − = A − = − 3 2 σ − [ 0 − 3 2 0 0 ]
the corresponding ∣ + ⟩ \ket + ∣ + ⟩ , ∣ − ⟩ \ket - ∣ − ⟩ , ∣ 0 ⟩ \ket 0 ∣ 0 ⟩ are three states for spin-1 particle not for spin-1 2 \frac{1}{2} 2 1 particle
Notation
A i A_i A i : a rank-3 tensor, A i ∈ C D × 2 × 2 A_i\in \mathbb C^{D\times 2\times 2} A i ∈ C D × 2 × 2 , D D D is the number of basis state for single site.
A i s i A_i^{s_i} A i s i means when the site i i i is in state s i s_i s i , there is a 2 × 2 2\times2 2 × 2 matrix for product
For translationally symmetric A i = A A_i=A A i = A
σ + \sigma^+ σ + : creation / raising operator , σ + = [ 0 0 1 0 ] \sigma^+ = \begin{bmatrix}0&0\\1&0\end{bmatrix} σ + = [ 0 1 0 0 ]
σ + ∣ ↓ ⟩ = 0 \sigma^+ \ket \downarrow = 0 σ + ∣ ↓ ⟩ = 0
σ + ∣ ↑ ⟩ = ∣ ↓ ⟩ \sigma^+ \ket \uparrow =\ket \downarrow σ + ∣ ↑ ⟩ = ∣ ↓ ⟩
σ − \sigma^- σ − : annihilation / lowering operator, σ − = [ 0 1 0 0 ] \sigma^- = \begin{bmatrix}0&1\\0&0\end{bmatrix} σ − = [ 0 0 1 0 ]
σ − ∣ ↓ ⟩ = ∣ ↑ ⟩ \sigma^- \ket \downarrow = \ket \uparrow σ − ∣ ↓ ⟩ = ∣ ↑ ⟩
σ − ∣ ↑ ⟩ = 0 \sigma^- \ket \uparrow = 0 σ − ∣ ↑ ⟩ = 0
∣ + ⟩ \ket + ∣ + ⟩ : for spin-1 , ∣ + ⟩ = ∣ ↑ ↑ ⟩ \ket + = \ket {\uparrow\uparrow} ∣ + ⟩ = ∣ ↑↑ ⟩
∣ − ⟩ \ket - ∣ − ⟩ : for spin-1 , ∣ − ⟩ = ∣ ↓ ↓ ⟩ \ket - = \ket{\downarrow\downarrow} ∣ − ⟩ = ∣ ↓↓ ⟩
∣ 0 ⟩ \ket 0 ∣ 0 ⟩ : for spin-1 , ∣ 0 ⟩ = 1 2 ( ∣ ↑ ↓ ⟩ + ∣ ↓ ↑ ⟩ ) \ket 0 = \frac{1}{\sqrt 2}\left(\ket{\uparrow\downarrow}+\ket{\downarrow\uparrow}\right) ∣ 0 ⟩ = 2 1 ( ∣ ↑↓ ⟩ + ∣ ↓↑ ⟩ )
[MPO] Matrix Product Operator : O ^ = ∑ σ i , σ i ′ [ W 1 σ 1 σ 1 ′ ⋯ W N σ N σ N ′ ] ∣ σ 1 … σ N ⟩ ⟨ σ 1 ′ ⋯ σ N ′ ∣ \hat O = \sum_{\sigma_i,\sigma_i'}\left[W_1^{\sigma_1\sigma_1'}\cdots W_N^{\sigma_N\sigma_N'}\right]\ket{\sigma_1\dots\sigma_N}\bra{\sigma_1'\cdots\sigma_N'} O ^ = ∑ σ i , σ i ′ [ W 1 σ 1 σ 1 ′ ⋯ W N σ N σ N ′ ] ∣ σ 1 … σ N ⟩ ⟨ σ 1 ′ ⋯ σ N ′ ∣
Example : single site operator
O ^ j = I ⊗ ⋯ ⊗ O ^ ⏟ site j ⊗ ⋯ ⊗ I \hat O_j = I\otimes\cdots\otimes \underbrace{\hat O}_{\text{site}~j}\otimes\cdots\otimes I O ^ j = I ⊗ ⋯ ⊗ site j O ^ ⊗ ⋯ ⊗ I
W i σ i , σ i ′ = ⟨ σ i ∣ O ^ ∣ σ i ′ ⟩ W_i^{\sigma_i,\sigma_i'}=\bra {\sigma_i}\hat O\ket {\sigma_i'} W i σ i , σ i ′ = ⟨ σ i ∣ O ^ ∣ σ i ′ ⟩
Example : paramagnetic system H ^ = − ∑ i h S ^ i z \hat H = -\sum_i h\hat S_i^z H ^ = − ∑ i h S ^ i z
H ^ = ( − h S ^ z ⊗ I ⊗ ⋯ ⊗ I ) + ⋯ + ( I ⊗ ⋯ ⊗ I ⊗ − h S ^ z ) \hat H = (-h\hat S^z\otimes I\otimes \cdots \otimes I)+\cdots + (I\otimes \cdots\otimes I\otimes -h\hat S^z) H ^ = ( − h S ^ z ⊗ I ⊗ ⋯ ⊗ I ) + ⋯ + ( I ⊗ ⋯ ⊗ I ⊗ − h S ^ z )
W 1 = [ − h S z I ] W i = [ I 0 − h S z I ] W N = [ I − h S z ] W_1 = \begin{bmatrix}-hS^z&I\end{bmatrix}\quad W_i=\begin{bmatrix}I&0\\-hS^z&I\end{bmatrix}\quad W_N=\begin{bmatrix}I\\-hS^z\end{bmatrix} W 1 = [ − h S z I ] W i = [ I − h S z 0 I ] W N = [ I − h S z ]
Example : Transverse field Ising model H ^ = − ∑ i S ^ i z S ^ i + 1 z + h ∑ i S ^ i x \hat H =-\sum_i \hat S_i^z\hat S_{i+1}^z + h\sum_i\hat S_i^x H ^ = − ∑ i S ^ i z S ^ i + 1 z + h ∑ i S ^ i x
W 1 = [ h S x − S z I ] W i = [ I 0 0 S z 0 0 h S x − S z I ] W N = [ I S z h S x ] W_1 = \begin{bmatrix}hS^x&-S^z&I\end{bmatrix}\quad W_i =\begin{bmatrix}I&0&0\\S^z&0&0\\hS^x&-S^z&I\end{bmatrix}\quad W_N = \begin{bmatrix}I\\S^z\\hS^x\end{bmatrix} W 1 = [ h S x − S z I ] W i = I S z h S x 0 0 − S z 0 0 I W N = I S z h S x
Notation
W i W_i W i a rank-4 tensor, W i ∈ C D × D × 2 × 2 W_i\in \mathbb C^{D\times D\times 2\times 2} W i ∈ C D × D × 2 × 2
W i σ i σ j W_i^{\sigma_i\sigma_j} W i σ i σ j means for site i i i when the left state is σ i \sigma_i σ i and right state σ j \sigma_j σ j there is a 2 × 2 2\times2 2 × 2 matrix for product
[DMRG] Density matrix renormalization group
find the ground state that argmin ∣ ψ ⟩ ⟨ ψ ∣ H ^ ∣ ψ ⟩ ⟨ ψ ⟩ \underset{\ket \psi}{\text{argmin}}\frac{\bra \psi \hat H \ket \psi}{\braket{\psi}} ∣ ψ ⟩ argmin ⟨ ψ ⟩ ⟨ ψ ∣ H ^ ∣ ψ ⟩
left normalization : A † A = I A ′ = U Σ V † → A = U A^\dagger A = I\quad A'=U\Sigma V^\dagger\to A = U A † A = I A ′ = U Σ V † → A = U
right normalization : B B † = I B ′ = U Σ V † → B = V † BB^\dagger = I\quad B'=U\Sigma V^\dagger\to B=V^\dagger B B † = I B ′ = U Σ V † → B = V †
substitution algorithm : imaginary time evolution, but converge slower
Algorithm
random initialize ∣ ψ ⟩ \ket \psi ∣ ψ ⟩ as right-normalized
build R 1 R_1 R 1
repeat until energy converge Var ( H ) < ϵ \text{Var}(H)<\epsilon Var ( H ) < ϵ
right sweep for l = 1 , … , L − 1 l=1,\dots,L-1 l = 1 , … , L − 1
solve eigen value for M l M_l M l
left normalize M l M_l M l
build L l L_l L l
Left sweep for l = L , … , 2 l=L,\dots,2 l = L , … , 2
solve eigen value for M l M_l M l
right normalize M l M_l M l
build R l R_l R l
[TEBD] Time evolving block decimation
Algorithm
two site tensor contraction
apply evolution gate
split into single site tensor
truncation : keep χ max \chi_{\text{max}} χ max eigen value and renormalize ∑ i Λ i i 2 = 1 \sum_i\Lambda_ii^2=1 ∑ i Λ i i 2 = 1
Computation errors :
truncation error : main error, grows exponentially
Trotter error : can be avoid reducing Δ t \Delta t Δ t and higher expansion
small eigen value : at step 3 Λ − 1 A \Lambda^{-1} A Λ − 1 A and B Λ − 1 B\Lambda^{-1} B Λ − 1
imaginary time evolution : canonical form only retrained when Δ τ → 0 \Delta\tau\to 0 Δ τ → 0
Further topics
Two-dimensional system
Mixed state and open quantum system dynamics
mixed state unitary time evolution is governed by H ^ \hat H H ^ : ∂ t ρ ^ ( t ) = − i [ H ^ , ρ ^ ( t ) ] \partial_t \hat \rho(t)=-i[\hat H,\hat \rho(t)] ∂ t ρ ^ ( t ) = − i [ H ^ , ρ ^ ( t )]
open quantum system : coupled to an environment or bath
which can be described by Lindblad equation : ∂ t ρ ^ = L ^ ρ ^ = − i [ H ^ , ρ ^ ] + ∑ i γ i ( L ^ i ρ ^ L ^ i † − 1 2 { L ^ i † L ^ i , ρ ^ } ) \partial _t \hat \rho =\hat{\mathcal L}\hat \rho = -i[\hat H,\hat \rho] + \sum_i\gamma_i\left(\hat L_i\hat \rho \hat L_i^\dagger - \frac{1}{2}\{\hat L_i^\dagger\hat L_i,\hat \rho\}\right) ∂ t ρ ^ = L ^ ρ ^ = − i [ H ^ , ρ ^ ] + ∑ i γ i ( L ^ i ρ ^ L ^ i † − 2 1 { L ^ i † L ^ i , ρ ^ } )
Notation
L ^ i \hat L_i L ^ i : jump operator, the system operators directly coupled to the bath, e.g. creation, annilation
L ^ \hat {\mathcal L} L ^ : Lindbladian, could be considered as a linear operator ∣ ρ ( t ) ⟩ = e − i L ^ t ∣ ρ 0 ⟩ \ket {\rho(t)}=e^{-i\hat {\mathcal L}t}\ket{\rho_0} ∣ ρ ( t ) ⟩ = e − i L ^ t ∣ ρ 0 ⟩
Symmetries
schmidt eigenstates belong to a fixed magnetization sector
[TDVP]Time-dependent variational principle
action function : S = ∫ t 1 t 2 ⟨ ψ ( t ) ∣ i ∂ t − H ^ ∣ ψ ( t ) ⟩ d t → ∂ t A i = − i H i A i S=\int_{t_1}^{t_2}\bra {\psi(t)}i\partial_t-\hat H\ket {\psi(t)}\text dt \to \partial_tA_i=-iH_iA_i S = ∫ t 1 t 2 ⟨ ψ ( t ) ∣ i ∂ t − H ^ ∣ ψ ( t ) ⟩ d t → ∂ t A i = − i H i A i
analogue to DMRG algorithm, but better at simulate long-ranged
Quantum Monte Carlo
Monte Carlo Basics
Monte Carlo
error 1 N \frac{1}{\sqrt N} N 1
Markov Chain : P X Y = T ( X → Y ) A ( X → Y ) A ( X → Y ) = min { 1 , W ( Y ) W ( X ) } P_{XY} = T(X\to Y)A(X\to Y)\quad A(X\to Y) = \text{min}\left\{1,\frac{W(Y)}{W(X)}\right\} P X Y = T ( X → Y ) A ( X → Y ) A ( X → Y ) = min { 1 , W ( X ) W ( Y ) }
Ergodicity : T ( X → Y ) > 0 ∀ X , Y T(X\to Y)>0\quad \forall X,Y T ( X → Y ) > 0 ∀ X , Y
Normalization : ∑ Y T ( X → Y ) = 1 \sum_Y T(X\to Y)=1 ∑ Y T ( X → Y ) = 1
Reversibility : T ( X → Y ) = T ( Y → X ) T(X\to Y) = T(Y\to X) T ( X → Y ) = T ( Y → X ) , if T T T not satisfy this, then A ( X → Y ) = min { 1 , W ( Y ) T ( Y → X ) W ( X ) T ( X → Y ) } A(X\to Y) = \text{min}\left\{1,\frac{W(Y)T(Y\to X)}{W(X)T(X\to Y)}\right\} A ( X → Y ) = min { 1 , W ( X ) T ( X → Y ) W ( Y ) T ( Y → X ) }
Notation
T T T : transition probability
W W W : static distribution
A A A : accept probability
Classical Ising model
symmetry-braking phase transition at a finite temperature
H = − ∑ < i , j > J i j σ i σ j − ∑ i h σ i σ i = ± 1 H = -\sum_{<i,j>} J_{ij}\sigma_i\sigma_j - \sum_i h\sigma_i\quad \sigma_i=\pm 1
H = − < i , j > ∑ J ij σ i σ j − i ∑ h σ i σ i = ± 1
Notation
J i j J_{ij} J ij : coupling constant
J i j ≥ 0 J_{ij} \ge 0 J ij ≥ 0 : symmetry-broken state
h i h_i h i : external field
< i , j > <i,j> < i , j > : means i , j i,j i , j are connected
c c c : cluster, ∣ c ∣ |c| ∣ c ∣ means the number of spins inside a cluster
β \beta β : inverse temperature, β = 1 κ B T \beta = \frac{1}{\kappa_B T} β = κ B T 1
m m m : magnetization
Algorithm : Swendsen-Wang
two neighboring parallel spins connected with probability p = 1 − e − 2 β J p=1-e^{-2\beta J} p = 1 − e − 2 β J
cluster labeling. e.g., Hoshen-Kopelman algorithm
measurement : ⟨ m 2 ⟩ C ′ = 1 N 2 ∑ c ∣ c ∣ 2 \langle m^2\rangle_{C'} = \frac{1}{N^2}\sum_c |c|^2 ⟨ m 2 ⟩ C ′ = N 2 1 ∑ c ∣ c ∣ 2
cluster flipped with probability 1 2 \frac{1}{2} 2 1
Algorithm : Wolff
random site
recursive find parallel neighbor add it to the cluster with p = 1 − e − 2 β J p=1-e^{-2\beta J} p = 1 − e − 2 β J
measurement : ⟨ m 2 ⟩ C ′ = 1 N ∣ c 0 ∣ \langle m^2\rangle_{C'}=\frac{1}{N}|c_0| ⟨ m 2 ⟩ C ′ = N 1 ∣ c 0 ∣ , since only one cluster
flip all spins in the clster
Swendsen-Wang will result in many small clusters in high dimension, but Wolff will result in one large cluster
Quantum spin system thermodynamics
⟨ m ^ ⟩ = 1 Z Tr ( m ^ e − β H ^ ) = 1 Z ∑ C m ( C ) W ( C ) Z = Tr ( e − β H ^ ) = ∑ C W ( C ) \langle \hat m \rangle = \frac{1}{Z}\text{Tr}\left(\hat m e^{-\beta \hat H}\right)=\frac{1}{Z}\sum_C m(C)W(C)\quad Z = \text{Tr}\left(e^{-\beta\hat H}\right)=\sum_C W(C)
⟨ m ^ ⟩ = Z 1 Tr ( m ^ e − β H ^ ) = Z 1 C ∑ m ( C ) W ( C ) Z = Tr ( e − β H ^ ) = C ∑ W ( C )
Notation
m ^ \hat m m ^ : magnetization
β \beta β : reverse of temperature β = 1 κ B T \beta = \frac{1}{\kappa_B T} β = κ B T 1
Z Z Z : partition sum
m ( C ) m(C) m ( C ) : magnetization of a configuration C C C
W ( C ) W(C) W ( C ) : weight of a configuration C C C
spin-1 2 \frac{1}{2} 2 1 in a magnetic field : H ^ = − h S ^ z − Γ S ^ x = [ − h 2 − Γ 2 − Γ 2 h 2 ] \hat H = -h \hat S^z -\Gamma \hat S^x=\begin{bmatrix}-\frac{h}{2}&-\frac{\Gamma}{2}\\-\frac{\Gamma}{2}&\frac{h}{2}\end{bmatrix} H ^ = − h S ^ z − Γ S ^ x = [ − 2 h − 2 Γ − 2 Γ 2 h ]
Notation
h h h : longitudinal field
Γ \Gamma Γ : transverse field
Discrete-time path integral : β = Δ τ M \beta = \Delta\tau M β = Δ τ M
expand to first order e − Δ τ H ^ = U ^ + O ( Δ τ 2 ) → Z ≈ Tr ( U ^ M ) e^{-\Delta \tau \hat H} = \hat U +\mathcal O(\Delta\tau^2)\to Z \approx \text{Tr}\left(\hat U^M\right) e − Δ τ H ^ = U ^ + O ( Δ τ 2 ) → Z ≈ Tr ( U ^ M )
Notation
U ^ \hat U U ^ : transfer matrix : U ^ = I − Δ τ H ^ = [ 1 + Δ τ h 2 Δ τ Γ 2 Δ τ Γ 2 1 − Δ τ h 2 ] \hat U = I - \Delta \tau \hat H = \begin{bmatrix}1+\frac{\Delta\tau h}{2}&\frac{\Delta\tau\Gamma}{2}\\\frac{\Delta\tau \Gamma}{2}&1-\frac{\Delta \tau h}{2}\end{bmatrix} U ^ = I − Δ τ H ^ = [ 1 + 2 Δ τ h 2 Δ τ Γ 2 Δ τ Γ 1 − 2 Δ τ h ]
Δ τ \Delta \tau Δ τ : discrete time step
M M M : resolution
E 0 E_0 E 0 : ground energy
Example : 1D classical Ising model (0D transverse field Ising model)
H = − J ∑ i M σ i σ i + 1 − h ∑ i σ i H = -J\sum_i^M\sigma_i\sigma_{i+1}-h\sum_i \sigma_i H = − J ∑ i M σ i σ i + 1 − h ∑ i σ i with periodic boundary condition σ M + 1 = σ 1 \sigma_{M+1}=\sigma_1 σ M + 1 = σ 1
β J = − 1 2 log ( Δ τ Γ / 2 ) \beta J = -\frac{1}{2}\text{log}(\Delta \tau \Gamma/2) β J = − 2 1 log ( Δ τ Γ/2 ) : off diagonal
β h = log ( 1 + Δ τ h / 2 ) \beta h = \text{log}(1+\Delta \tau h/2) β h = log ( 1 + Δ τ h /2 ) : diagonal
β E 0 = M β J \beta E_0 = M\beta J β E 0 = Mβ J
Continous-time path integral : Δ τ → 0 \Delta\tau \to 0 Δ τ → 0 ???
d d d -dimensional quantum spin model ⇔ \Leftrightarrow ⇔ d + 1 d+1 d + 1 - dimensional classical Ising model
Example : 1D classical Ising model (0D transverse field Ising model)
quantum X Y XY X Y model : H ^ = − ∑ < i , j > J x y 2 ( S ^ i + S ^ j − + S ^ i − S ^ j + ) \hat H = -\sum_{<i,j>}\frac{J_{xy}}{2}(\hat S_i^+\hat S_j^- + \hat S_i^-\hat S_j^+) H ^ = − ∑ < i , j > 2 J x y ( S ^ i + S ^ j − + S ^ i − S ^ j + )
spin flip-flops (blue line) proportional to β \beta β which is a constant not grow bigger as Δ τ → 0 \Delta \tau \to 0 Δ τ → 0
negative sign problem : positive off diagonal lead to negative probabilities
solution : ⟨ A ^ ⟩ W = ∑ C A ( C ) W ( C ) ∑ C W ( C ) = ∑ C A ( C ) sign ( W ) ∣ W ( C ) ∣ / ∑ C ∣ W ( C ) ∣ ∑ C sign ( W ) ∣ W ( C ) ∣ / ∑ C ∣ W ( C ) ∣ \langle \hat A\rangle_W = \frac{\sum_C A(C)W(C)}{\sum_C W(C)} = \frac{\sum_C A(C)\text{sign}(W)|W(C)|/\sum_C |W(C)|}{\sum_C \text{sign}(W)|W(C)|/\sum_C|W(C)|} ⟨ A ^ ⟩ W = ∑ C W ( C ) ∑ C A ( C ) W ( C ) = ∑ C sign ( W ) ∣ W ( C ) ∣/ ∑ C ∣ W ( C ) ∣ ∑ C A ( C ) sign ( W ) ∣ W ( C ) ∣/ ∑ C ∣ W ( C ) ∣
error : β ↑ , L ↑ → ϵ ↑ \beta\uparrow ,L\uparrow\to \epsilon\uparrow β ↑ , L ↑→ ϵ ↑ error ϵ \epsilon ϵ increase with inverse temperature β \beta β and system size L L L
Variational Monte Carlo
variational principle : ∣ ψ ( θ ) ⟩ = ∑ n ψ n ( θ ) ∣ n ⟩ \ket {\psi(\theta)} = \sum_n \psi_n(\theta)\ket n ∣ ψ ( θ ) ⟩ = ∑ n ψ n ( θ ) ∣ n ⟩
energy expectation(MCMC) : E θ = ∑ n ∣ ψ n ( θ ) ∣ 2 E 1 ( n ) ∑ n ∣ ψ n ( θ ) ∣ 2 E_\theta = \frac{\sum_n |\psi_n(\theta)|^2E_1(n)}{\sum_n |\psi_n(\theta)|^2} E θ = ∑ n ∣ ψ n ( θ ) ∣ 2 ∑ n ∣ ψ n ( θ ) ∣ 2 E 1 ( n )
Notation
E 1 ( n ) E_1(n) E 1 ( n ) : local energy E 1 ( n ) = ∑ m ⟨ n ∣ H ^ ∣ m ⟩ ψ m ( θ ) ψ n ( θ ) E_1(n)=\sum_m \bra n\hat H\ket m\psi_m(\theta)\psi_n(\theta) E 1 ( n ) = ∑ m ⟨ n ∣ H ^ ∣ m ⟩ ψ m ( θ ) ψ n ( θ )
G k l G_{kl} G k l : metric tensor G k l = ⟨ O ^ k ∗ O ^ l ⟩ θ − ⟨ O ^ k ∗ ⟩ θ ⟨ O ^ l ⟩ θ G_{kl} = \langle\hat O_k^*\hat O_l\rangle_\theta - \langle \hat O_k^*\rangle_\theta\langle\hat O_l\rangle_\theta G k l = ⟨ O ^ k ∗ O ^ l ⟩ θ − ⟨ O ^ k ∗ ⟩ θ ⟨ O ^ l ⟩ θ
O O O : logarithm wave-function derivative O = ∇ θ ψ n ( θ ) / ψ n ( θ ) O = \nabla_\theta \psi_n(\theta)/\psi_n(\theta) O = ∇ θ ψ n ( θ ) / ψ n ( θ )
O ^ = ∑ n O ( n ) ∣ n ⟩ ⟨ n ∣ \hat O = \sum_n O(n)\ket n \bra n O ^ = ∑ n O ( n ) ∣ n ⟩ ⟨ n ∣
[SGD]Stochastic Graident Descent : θ ← θ − λ ∇ θ E θ \theta\gets \theta - \lambda \nabla_\theta E_\theta θ ← θ − λ ∇ θ E θ
∇ θ ⟨ E ⟩ θ = 2 Re { ∑ n W ( n ) [ E 1 ( n ) − E θ ] O ( n ) } \nabla_\theta\langle E\rangle_\theta = 2\text{Re}\left\{\sum_n W(n)[E_1(n)-E_\theta]O(n)\right\} ∇ θ ⟨ E ⟩ θ = 2 Re { ∑ n W ( n ) [ E 1 ( n ) − E θ ] O ( n ) }
Stochastic Reconfiguration : θ ← θ − Δ τ G − 1 ∇ θ E θ \theta\gets \theta - \Delta \tau G^{-1}\nabla_\theta E_\theta θ ← θ − Δ τ G − 1 ∇ θ E θ
to avoid small value inverse : G ′ = β 2 I + G † G β ∈ R G' = \sqrt{\beta^2I + G^\dagger G}\quad \beta\in \R G ′ = β 2 I + G † G β ∈ R
Jastrow States : ψ n ( θ ) = exp ( ∑ i a i σ i + ∑ < i j > J i j σ i σ j ) θ = { a , J } \psi_n(\theta ) = \text{exp}\left(\sum_i a_i\sigma_i + \sum_{<ij>}J_{ij}\sigma_i\sigma_j \right)\quad \theta= \{a,J\} ψ n ( θ ) = exp ( ∑ i a i σ i + ∑ < ij > J ij σ i σ j ) θ = { a , J }
wave function form for spin system
[NQS]Neural Quantum States : ψ n ( θ ) = MLP ( { σ 1 , ⋯ , σ N } ) \psi_n(\theta)=\text{MLP}(\{\sigma_1,\cdots,\sigma_N\}) ψ n ( θ ) = MLP ({ σ 1 , ⋯ , σ N })
[MFPWF]Mean-field projected wave function : ∣ ψ ( θ ) ⟩ = P G [ ∑ i , j ∑ s , s ′ F i j s s ′ c ^ i , s † c ^ j , s ′ † ] N / 2 ∣ 0 ⟩ θ = F i j s s ′ ∈ R 2 N × 2 N \ket {\psi(\theta)} = \mathcal P_G \left[\sum_{i,j}\sum_{s,s'}F_{ij}^{ss'}\hat c_{i,s}^\dagger\hat c_{j,s'}^\dagger\right]^{N/2}\ket 0\quad \theta = F_{ij}^{ss'}\in\R^{2N\times 2N} ∣ ψ ( θ ) ⟩ = P G [ ∑ i , j ∑ s , s ′ F ij s s ′ c ^ i , s † c ^ j , s ′ † ] N /2 ∣ 0 ⟩ θ = F ij s s ′ ∈ R 2 N × 2 N
ψ n ( θ ) = ( N / 2 ) ! Pf ( X ) \psi_n(\theta) = (N/2)!\text{Pf}(X) ψ n ( θ ) = ( N /2 )! Pf ( X )
represent spin as pesudo-fermions : S ^ i { x , y , z } = 1 2 ∑ s s ′ c ^ i , s σ s s ′ α c ^ i , s ′ \hat S_i^{\{x,y,z\}} = \frac{1}{2}\sum_{ss'}\hat c_{i,s}\sigma_{ss'}^\alpha\hat c_{i,s'} S ^ i { x , y , z } = 2 1 ∑ s s ′ c ^ i , s σ s s ′ α c ^ i , s ′
Notation
P G \mathcal P_G P G : Gutzwilller projection operator
c ^ i , s , c ^ i , s † \hat c_{i,s},\hat c_{i,s}^\dagger c ^ i , s , c ^ i , s † : fermionic annihlation/creation operator
s , s ′ s,s' s , s ′ : spin of the site, ↑ \uparrow ↑ or ↓ \downarrow ↓
i , j i,j i , j : index of the site
Path integrals in quantum statistical mechanics
ρ free ( R ⃗ , R ⃗ ′ , Δ τ ) = ⟨ R ⃗ ∣ e − Δ τ T ^ ∣ R ⃗ ′ ⟩ = ( 2 π ℏ 2 Δ τ m ) − N d / 2 exp ( − ∣ R ⃗ − R ⃗ ′ ∣ 2 2 ℏ 2 Δ τ / m ) \rho_{\text{free}}(\vec R,\vec R',\Delta\tau) = \bra {\vec R} e^{-\Delta\tau\hat T}\ket{\vec R'}=\left(\frac{2\pi\hbar^2 \Delta\tau}{m}\right)^{-Nd/2}\text{exp}\left({-\frac{|\vec R-\vec R'|^2}{2\hbar^2\Delta\tau/m}}\right) ρ free ( R , R ′ , Δ τ ) = ⟨ R ∣ e − Δ τ T ^ ∣ R ′ ⟩ = ( m 2 π ℏ 2 Δ τ ) − N d /2 exp ( − 2 ℏ 2 Δ τ / m ∣ R − R ′ ∣ 2 )
Z = ∫ d R ⃗ ρ ( R ⃗ , R ⃗ ) = ∫ ( ∏ j = 1 M d R ⃗ j ) ∏ j = 1 M [ ( 2 π ℏ 2 Δ τ m ) − N d / 2 exp ( − R ⃗ j − R ⃗ j + 1 2 ℏ 2 Δ τ / m − Δ τ V ( R ⃗ j ) ) ] Z = \int \text d\vec R \rho(\vec R,\vec R)=\int \left(\prod_{j=1}^M \text d\vec R_j\right)\prod_{j=1}^M \left[\left(\frac{2\pi\hbar^2 \Delta \tau}{m}\right)^{-Nd/2}\text{exp}\left(-\frac{\vec R_j-\vec R_{j+1}}{2\hbar^2\Delta\tau/m}-\Delta\tau V(\vec R_j)\right)\right] Z = ∫ d R ρ ( R , R ) = ∫ ( ∏ j = 1 M d R j ) ∏ j = 1 M [ ( m 2 π ℏ 2 Δ τ ) − N d /2 exp ( − 2 ℏ 2 Δ τ / m R j − R j + 1 − Δ τ V ( R j ) ) ]
Notation
ρ free \rho_{\text{free}} ρ free : density matrix of free particles
Z Z Z : partition function
R ⃗ j \vec R_j R j : ( r ⃗ 1 , r ⃗ 2 , ⋯ , r ⃗ N ) (\vec r_1,\vec r_2,\cdots,\vec r_N) ( r 1 , r 2 , ⋯ , r N ) , N N N particles position at time j j j
T ^ , V ^ \hat T,\hat V T ^ , V ^ : kinetic, potential terms of Hamiltonian H ^ \hat H H ^ , T ^ = − ℏ 2 2 m ∂ x 2 \hat T = -\frac{\hbar^2}{2m}\partial_x^2 T ^ = − 2 m ℏ 2 ∂ x 2
path sampling method : A ( X → X ′ ) = min { 1 , exp ( − m [ ( r ⃗ j − 1 i − r ⃗ j i ′ ) 2 + ( r ⃗ j i ′ − r ⃗ j + 1 i ) 2 ] / 2 ℏ 2 Δ τ ) exp ( − m [ ( r ⃗ j − 1 i − r ⃗ j i ) 2 + ( r ⃗ j i − r ⃗ j + 1 i ) 2 ] / 2 ℏ 2 Δ τ ) ⋅ exp ( − Δ τ [ V ( R ⃗ j ′ ) − V ( R ⃗ j ) ] ) } A(X\to X' ) = \text{min}\left\{1, \frac{\text{exp}(-m[(\vec r_{j-1}^i - \vec r_j^{i'})^2+(\vec r_j^{i'}-\vec r^i_{j+1})^2]/2\hbar^2\Delta\tau)}{\text{exp}(-m[(\vec r_{j-1}^i-\vec r_j^i)^2+(\vec r_j^i - \vec r_{j+1}^i)^2]/2\hbar^2\Delta \tau)}\cdot \text{exp}(-\Delta \tau[V(\vec R'_j)-V(\vec R_j)])\right\} A ( X → X ′ ) = min { 1 , exp ( − m [( r j − 1 i − r j i ) 2 + ( r j i − r j + 1 i ) 2 ] /2 ℏ 2 Δ τ ) exp ( − m [( r j − 1 i − r j i ′ ) 2 + ( r j i ′ − r j + 1 i ) 2 ] /2 ℏ 2 Δ τ ) ⋅ exp ( − Δ τ [ V ( R j ′ ) − V ( R j )]) }
The accept probability of Metropolis algorithm is defined above
H = ∑ j ∑ i m 2 ( ℏ Δ τ ) 2 ( r ⃗ j i − r ⃗ j + 1 i ) 2 + ∑ j V ( R ⃗ j ) H = \sum_j\sum_i \frac{m}{2(\hbar\Delta \tau)^2}(\vec r_j^i-\vec r_{j+1}^i)^2+\sum_j V(\vec R_j) H = ∑ j ∑ i 2 ( ℏΔ τ ) 2 m ( r j i − r j + 1 i ) 2 + ∑ j V ( R j )
Notation
r ⃗ j i \vec r_j^i r j i : position of particle i i i at time j j j
r ⃗ j i ′ \vec r_j^{i'} r j i ′ : displaced position of particle i i i at time j j j
R ⃗ j \vec R_j R j : ( r ⃗ 1 , r ⃗ 2 , ⋯ , r ⃗ N ) (\vec r_1,\vec r_2,\cdots,\vec r_N) ( r 1 , r 2 , ⋯ , r N ) , N N N particles position at time j j j
V V V : potential energy, in most cases it’s sum of single-particle and two-particle terms : V ^ = ∑ i N v ext ( r ⃗ ^ i ) + ∑ i < j v ( r ⃗ ^ i − r ⃗ ^ j ) \hat V = \sum_i^N v_{\text{ext}}(\hat{\vec r}^i) + \sum_{i<j}v(\hat{\vec r}^i -\hat{\vec r}^j) V ^ = ∑ i N v ext ( r ^ i ) + ∑ i < j v ( r ^ i − r ^ j )
Boson symmetry :
ρ Bose = 1 N ! ∑ P ρ ( R ⃗ 1 , P R ⃗ 2 , β ) \rho_{\text{Bose}} = \frac{1}{N!}\sum_P \rho(\vec R_1,P\vec R_2, \beta) ρ Bose = N ! 1 ∑ P ρ ( R 1 , P R 2 , β )
[DMC] Diffusion Monte Carlo
Algorithm
w 0 α ← 1 , R ⃗ 0 α ← R ⃗ 0 w_0^\alpha \gets 1,\vec R_0^\alpha \gets \vec R_0 w 0 α ← 1 , R 0 α ← R 0
update loop
R ⃗ k α ∼ N ( R ⃗ k − 1 α , Δ τ m ) \vec R^\alpha_k \sim \mathcal N(\vec R^\alpha_{k-1},\frac{\Delta \tau}{m}) R k α ∼ N ( R k − 1 α , m Δ τ ) : diffusion update
w k α ← w k − 1 α e − Δ τ 2 [ V ( R ⃗ k α ) + V ( R ⃗ k − 1 α ) ] w_k^\alpha\gets w_{k-1}^\alpha e^{-\frac{\Delta \tau}{2}[V(\vec R_k^\alpha)+V(\vec R^\alpha_{k-1})]} w k α ← w k − 1 α e − 2 Δ τ [ V ( R k α ) + V ( R k − 1 α )]
clone ⌊ w k α E α [ w k α ] + r ⌋ \lfloor \frac{w_k^\alpha}{\mathbb E_\alpha [w_k^\alpha]} + r\rfloor ⌊ E α [ w k α ] w k α + r ⌋ times for walker α \alpha α
maximum clones ⇔ \Leftrightarrow ⇔ Δ τ \Delta \tau Δ τ too large
scale w α → exp ( E t Δ τ ) w α w^\alpha\to\text{exp}(E_t\Delta \tau)w^\alpha w α → exp ( E t Δ τ ) w α where E t E_t E t is trial energy V ( R ⃗ ) ← V ( R ⃗ ) − E t V(\vec R)\gets V(\vec R)-E_t V ( R ) ← V ( R ) − E t , when E t = E 0 E_t=E_0 E t = E 0 stability will achieve.
Importance sampling : R ⃗ k − 1 ← R ⃗ k − 1 + ℏ 2 Δ τ 2 m 2 ∇ ϕ t ( R ⃗ k − 1 ) ϕ ( R ⃗ k − 1 ) \vec R_{k-1} \gets \vec R_{k-1}+\frac{\hbar^2\Delta\tau}{2m}\frac{2\nabla\phi_t(\vec R_{k-1})}{\phi(\vec R_{k-1})} R k − 1 ← R k − 1 + 2 m ℏ 2 Δ τ ϕ ( R k − 1 ) 2∇ ϕ t ( R k − 1 )
before update, add a dift : R ⃗ k − 1 ← R ⃗ k − 1 + ℏ 2 Δ τ 2 m 2 ∇ ϕ t ( R ⃗ k − 1 ) ϕ ( R ⃗ k − 1 ) \vec R_{k-1} \gets \vec R_{k-1}+\frac{\hbar^2\Delta\tau}{2m}\frac{2\nabla\phi_t(\vec R_{k-1})}{\phi(\vec R_{k-1})} R k − 1 ← R k − 1 + 2 m ℏ 2 Δ τ ϕ ( R k − 1 ) 2∇ ϕ t ( R k − 1 )
Notation
ϕ t \phi_t ϕ t : trial wavefunction ϕ t ( R ⃗ ) = ∏ i < j f z ( ∣ r ⃗ i − r ⃗ j ∣ ) \phi_t(\vec R)= \prod_{i<j}f_z(|\vec r_i -\vec r_j|) ϕ t ( R ) = ∏ i < j f z ( ∣ r i − r j ∣ )
f z f_z f z : Jastrow factor, two particle coorelations
Fermionic systems : ϕ t ′ ( R ⃗ ) = ϕ t ( R ⃗ ) det l , n [ e i k ⃗ l ⋅ r ⃗ n ] \phi_{t'}(\vec R)=\phi_t(\vec R)\underset{l,n}{\text{det}}[e^{i\vec k_l\cdot \vec r_n}] ϕ t ′ ( R ) = ϕ t ( R ) l , n det [ e i k l ⋅ r n ]
ϕ 0 \phi_0 ϕ 0 could be negative, when ϕ → − ϕ \phi\to-\phi ϕ → − ϕ should be applied
Notation
n n n : particle index
k ⃗ l \vec k_l k l : wave vectors compatible with periodic boundary conditions
Electronic-structure problem
Full Hamiltonian of matter
H ^ = − ∑ j N e ℏ 2 2 m ∇ r ⃗ j 2 ⏟ T ^ e − ∑ l N n ℏ 2 2 M l ∇ R ⃗ l 2 ⏟ T ^ n + 1 2 ∑ i ≠ j N e e 2 ∣ r ⃗ i − r ⃗ j ∣ ⏟ V e e + 1 2 ∑ l ≠ m N n Z l Z m e 2 ∣ R ⃗ l − R ⃗ m ∣ ⏟ V n n − ∑ j = 1 N e ∑ l = 1 N n Z l e 2 ∣ r ⃗ j − R ⃗ l ∣ ⏟ V e n + V S O \hat H = -\underbrace{\sum_j^{N_e}\frac{\hbar^2}{2m}\nabla^2_{\vec r_j}}_{\hat T_e}- \underbrace{\sum_l^{N_n}\frac{\hbar^2}{2M_l}\nabla^2_{\vec R_l}}_{\hat T_n} + \underbrace{\frac{1}{2}\sum_{i\neq j}^{N_e}\frac{e^2}{|\vec r_i -\vec r_j|}}_{V_{ee}}+\underbrace{\frac{1}{2}\sum_{l\neq m}^{N_n}\frac{Z_lZ_me^2}{|\vec R_l-\vec R_m|}}_{V_{nn}}-\underbrace{\sum_{j=1}^{N_e}\sum_{l=1}^{N_n}\frac{Z_le^2}{|\vec r_j -\vec R_l|}}_{V_{en}}+V_{SO}
H ^ = − T ^ e j ∑ N e 2 m ℏ 2 ∇ r j 2 − T ^ n l ∑ N n 2 M l ℏ 2 ∇ R l 2 + V ee 2 1 i = j ∑ N e ∣ r i − r j ∣ e 2 + V nn 2 1 l = m ∑ N n ∣ R l − R m ∣ Z l Z m e 2 − V e n j = 1 ∑ N e l = 1 ∑ N n ∣ r j − R l ∣ Z l e 2 + V SO
Adiabatic (Born-Oppenheimer) approximation : M l ≫ m ∣ R ⃗ l − R ⃗ m ∣ ≪ ∣ r ⃗ i − r ⃗ j ∣ M_l \gg m\quad |\vec R_l-\vec R_m| \ll |\vec r_i - \vec r_j| M l ≫ m ∣ R l − R m ∣ ≪ ∣ r i − r j ∣
H ^ = ∑ j = 1 N e ℏ 2 2 m ∇ r ⃗ j 2 ⏟ T ^ e − ∑ j = 1 N e ∑ j = 1 N n Z l e 2 ∣ r ⃗ j − R ⃗ l ∣ ⏟ V e n + 1 2 ∑ i ≠ j N e e 2 ∣ r ⃗ i − r ⃗ j ∣ ⏟ V e e \hat H = \underbrace{\sum_{j=1}^{N_e}\frac{\hbar^2}{2m}\nabla^2_{\vec r_j}}_{\hat T_e} - \underbrace{\sum_{j=1}^{N_e}\sum_{j=1}^{N_n}\frac{Z_le^2}{|\vec r_j - \vec R_l|}}_{V_{en}}+\underbrace{\frac{1}{2}\sum_{i\neq j}^{N_e}\frac{e^2}{|\vec r_i-\vec r_j|}}_{V_{ee}}
H ^ = T ^ e j = 1 ∑ N e 2 m ℏ 2 ∇ r j 2 − V e n j = 1 ∑ N e j = 1 ∑ N n ∣ r j − R l ∣ Z l e 2 + V ee 2 1 i = j ∑ N e ∣ r i − r j ∣ e 2
Non-interacing (mean-field) approximation : H ^ sp = − ℏ 2 2 m ∇ r ⃗ 2 + V eff ( r ⃗ ) \hat H_{\text{sp}} = -\frac{\hbar^2}{2m}\nabla^2_{\vec r}+V_{\text{eff}}(\vec r) H ^ sp = − 2 m ℏ 2 ∇ r 2 + V eff ( r )
non-interacting electrons assumption, V e n + V M + V e e → V eff V_{en}+V_M + V_{ee}\to V_{\text{eff}} V e n + V M + V ee → V eff
Hatree-Fock approximation :
use a Slater determinant for non-interacting system
⟨ Φ ∣ H ^ ∣ Φ ⟩ = ∑ i , σ ∫ d 3 r ⃗ ϕ i σ ∗ ( r ⃗ ) [ − ℏ 2 2 m ∇ 2 + V e n ( r ⃗ ) ] σ i σ ( r ⃗ ) + V M ⏟ T ^ e + V e n + ∑ i , j , σ , σ ′ e 2 ∫ d 3 r ⃗ d 3 r ⃗ ′ ϕ i σ ∗ ( r ⃗ ) ϕ j σ ′ ∗ ( r ⃗ ′ ) 1 ∣ r ⃗ − r ⃗ ′ ∣ ϕ i σ ( r ⃗ ) ϕ j σ ′ ( r ⃗ ′ ) Hatree interaction } V e e \begin{aligned}
\bra \Phi \hat H\ket\Phi &=
\underbrace{\sum_{i,\sigma}\int \text d^3 \vec r~\phi_i^{\sigma*}(\vec r)[-\frac{\hbar^2}{2m}\nabla^2 + V_{en}(\vec r)]\sigma_i^\sigma(\vec r) + V_M}_{\hat T_e+ V_{en}}
\\
&\begin{drcases}
+ \sum_{i,j,\sigma,\sigma'}e^2\int \text d^3\vec r~\text d^3\vec r'~\phi_i^{\sigma*}(\vec r)~\phi_j^{\sigma'*}(\vec r')\frac{1}{|\vec r-\vec r'|}\phi_i^\sigma(\vec r)\phi_j^{\sigma'}(\vec r')&\text{Hatree interaction}
\\
% -\sum_{i,j,\sigma}e^2\int \text d^3\vec r~\text d^3\vec r'~\phi_i^{\sigma*}(\vec r)~\phi_j^{\sigma*}(\vec r)\frac{1}{|\vec r-\vec r'|}\phi_j^\sigma(\vec r)\phi_i^\sigma(\vec r')&\text{exchange interaction}
\end{drcases}
V_{ee}
\end{aligned}
⟨ Φ ∣ H ^ ∣ Φ ⟩ = T ^ e + V e n i , σ ∑ ∫ d 3 r ϕ i σ ∗ ( r ) [ − 2 m ℏ 2 ∇ 2 + V e n ( r )] σ i σ ( r ) + V M + i , j , σ , σ ′ ∑ e 2 ∫ d 3 r d 3 r ′ ϕ i σ ∗ ( r ) ϕ j σ ′ ∗ ( r ′ ) ∣ r − r ′ ∣ 1 ϕ i σ ( r ) ϕ j σ ′ ( r ′ ) Hatree interaction } V ee
The integration shows that the wave function ψ \psi ψ is defined in the whole space
Notation
i , j i,j i , j : index of the single particle state
σ , σ ′ \sigma,\sigma' σ , σ ′ : spin of the electron, ↑ \uparrow ↑ or ↓ \downarrow ↓
ϕ i σ ( r ⃗ ) \phi_i^\sigma(\vec r) ϕ i σ ( r ) : dnotes for particle i i i of state σ \sigma σ , the wave function value at position r ⃗ \vec r r
Configuration-Interaction : ∣ Φ 0 ⟩ = ( 1 + ∑ i , μ α μ i c ^ i † c ^ μ + ∑ i < j , μ < ν α μ , ν i j c ^ i † c ^ j † c ^ μ c ^ ν ) ∣ Φ HF ⟩ \ket {\Phi_0} = \left(1+\sum_{i,\mu}\alpha_\mu^i\hat c^\dagger_i\hat c_\mu +\sum_{i<j,\mu<\nu}\alpha_{\mu,\nu}^{ij}\hat c^\dagger_i\hat c^\dagger_j \hat c_\mu \hat c_\nu\right)\ket {\Phi_{\text{HF}}} ∣ Φ 0 ⟩ = ( 1 + ∑ i , μ α μ i c ^ i † c ^ μ + ∑ i < j , μ < ν α μ , ν ij c ^ i † c ^ j † c ^ μ c ^ ν ) ∣ Φ HF ⟩
add interations between electrons correctly and allow calculation of excited state
Notation
∣ Φ HF ⟩ \ket {\Phi_{\text{HF}}} ∣ Φ HF ⟩ : Hartree-Fock ground state, which is from the Hartree-Fock approximation, ∣ Φ HF ⟩ = ∏ μ = 1 N c ^ μ † ∣ nulll ⟩ \ket {\Phi_{\text{HF}}}=\prod_{\mu=1}^N \hat c^\dagger_\mu \ket {\text{nulll}} ∣ Φ HF ⟩ = ∏ μ = 1 N c ^ μ † ∣ nulll ⟩
c ^ † , c ^ \hat c^\dagger, \hat c c ^ † , c ^ : creation / annihilation operator
[DFT] Density functional theory
Hohenberg-Kohn Theorem : for electron system H ^ = − ℏ 2 2 m ∑ j ∇ j 2 ⏟ T ^ e + 1 2 ∑ i ≠ j e 2 ∣ r ⃗ i − r ⃗ j ∣ ⏟ V ^ e e + ∫ v ext ( r ⃗ ) n ( r ⃗ ) d r ⃗ ⏟ V ^ ext \hat H = \underbrace{-\frac{\hbar^2}{2m}\sum_j\nabla_j^2}_{\hat T_e}+\underbrace{\frac{1}{2}\sum_{i\neq j}\frac{e^2}{|\vec r_i -\vec r_j|}}_{\hat V_{ee}}+\underbrace{\int v_{\text{ext}}(\vec r)n(\vec r)\text d\vec r}_{\hat V_{\text{ext}}} H ^ = T ^ e − 2 m ℏ 2 j ∑ ∇ j 2 + V ^ ee 2 1 i = j ∑ ∣ r i − r j ∣ e 2 + V ^ ext ∫ v ext ( r ) n ( r ) d r
Uniqueness : n 0 ( r ⃗ ) ⇔ v ext ( r ⃗ ) n_0(\vec r) \Leftrightarrow v_{\text{ext}}(\vec r) n 0 ( r ) ⇔ v ext ( r )
Variational : n 0 = argmin n E = argmin n ⟨ Ψ ∣ H ^ ∣ Ψ ⟩ n_0 = \underset{n}{\text{argmin}}~E = \underset{n}{\text{argmin}}\bra\Psi \hat H\ket \Psi n 0 = n argmin E = n argmin ⟨ Ψ ∣ H ^ ∣ Ψ ⟩
Notation
v ext ( r ⃗ ) v_{\text{ext}}(\vec r) v ext ( r ) : external potential density
n 0 ( r ⃗ ) n_0(\vec r) n 0 ( r ) : ground state electron density
n ( r ⃗ ) n(\vec r) n ( r ) : electron density ∑ j ∣ ϕ j ( r ⃗ ) ∣ 2 \sum_j|\phi_j(\vec r)|^2 ∑ j ∣ ϕ j ( r ) ∣ 2
Kohn-Sham solution :
find a non-interacting system that has the same particle density as the interacting one
Algorithm
initial guess V eff 0 V^0_{\text{eff}} V eff 0
solve ϕ j \phi_j ϕ j (eigen vector) from KS1 : [ − ℏ 2 2 m e ∇ 2 + V eff ( r ⃗ ) ] ϕ j ( r ⃗ ) = ε j ϕ j ( r ⃗ ) \left[-\frac{\hbar^2}{2m_e}\nabla^2+V_{\text{eff}}(\vec r)\right]\phi_j(\vec r) = \varepsilon_j \phi_j(\vec r) [ − 2 m e ℏ 2 ∇ 2 + V eff ( r ) ] ϕ j ( r ) = ε j ϕ j ( r )
n ( r ⃗ ) ← ∑ i ∣ ϕ j ( r ⃗ ) ∣ 2 n(\vec r)\gets \sum_i |\phi_j(\vec r)|^2 n ( r ) ← ∑ i ∣ ϕ j ( r ) ∣ 2
revise V eff V_{\text{eff}} V eff from KS 2 : V eff ( r ⃗ ) = ∫ d 3 r ′ n ( r ⃗ ′ ) ∣ r ⃗ − r ⃗ ′ ∣ + μ XC ( r ⃗ ) + ν ext ( r ⃗ ) V_{\text{eff}}(\vec r) = \int \text d^3 r'\frac{n(\vec r')}{|\vec r-\vec r'|}+\mu^{\text{XC}}(\vec r)+\nu_{\text{ext}}(\vec r) V eff ( r ) = ∫ d 3 r ′ ∣ r − r ′ ∣ n ( r ′ ) + μ XC ( r ) + ν ext ( r )
goto 2 if ∣ V eff new − V eff odd ∣ ≥ threshold |V_{\text{eff}}^{\text{new}}-V_{\text{eff}}^{\text{odd}}|\ge \text{threshold} ∣ V eff new − V eff odd ∣ ≥ threshold
Notation
μ XC \mu^{\text{XC}} μ XC : functional derivative of the exchange-correlation energy, μ XC = d E XC d n \mu^{\text{XC}} = \frac{\text d\text E^{\text{XC}}}{\text d n} μ XC = d n d E XC
E XC E^{\text{XC}} E XC : exchange-correlation energy, E XC = ⟨ Φ ∣ T ^ ∣ Φ ⟩ − E k + ⟨ Φ ∣ V ^ e e ∣ Φ ⟩ − E c E^{\text{XC}}=\bra \Phi \hat T\ket \Phi - E_k +\bra \Phi \hat V_{ee}\ket \Phi -E_c E XC = ⟨ Φ ∣ T ^ ∣ Φ ⟩ − E k + ⟨ Φ ∣ V ^ ee ∣ Φ ⟩ − E c with approximation (local density approximation) E XC ≈ ∫ n ( r ⃗ ) ε XC ( n ( r ⃗ ) ) d r ⃗ = ∫ n ( r ⃗ ) [ ε X ( n ( r ⃗ ) ) + ε C ( n ( r ⃗ ) ) ] d r ⃗ E^{\text{XC}}\approx \int n(\vec r) \varepsilon^{\text{XC}}(n(\vec r))\text d\vec r=\int n(\vec r)[\varepsilon^X(n(\vec r))+\varepsilon^C(n(\vec r))]\text d\vec r E XC ≈ ∫ n ( r ) ε XC ( n ( r )) d r = ∫ n ( r ) [ ε X ( n ( r )) + ε C ( n ( r ))] d r
uniform electron gas : ε ( n ( r ⃗ ) ) = − 3 4 ( 3 π ) 1 / 3 n ( r ⃗ ) 1 / 3 \varepsilon(n(\vec r)) = -\frac{3}{4}\left(\frac{3}{\pi}\right)^{1/3}n(\vec r)^{1/3} ε ( n ( r )) = − 4 3 ( π 3 ) 1/3 n ( r ) 1/3
Monte carlo -> interpolation
E C E_C E C : Hartree energy E C = 1 2 ∫ e 2 n ( r ⃗ ) n ( r ⃗ ′ ) ∣ r ⃗ − r ⃗ ′ ∣ d r ⃗ d r ⃗ ′ E_C= \frac{1}{2}\int e^2 \frac{n(\vec r)n(\vec r')}{|\vec r-\vec r'|}\text d\vec r\text d \vec r' E C = 2 1 ∫ e 2 ∣ r − r ′ ∣ n ( r ) n ( r ′ ) d r d r ′
E K E_K E K : kinetic energy E K = − ℏ 2 2 m ∑ j ⟨ ϕ j ∣ ∇ 2 ∣ ϕ j ⟩ E_K = -\frac{\hbar^2}{2m}\sum_j \bra {\phi_j}\nabla^2\ket{\phi_j} E K = − 2 m ℏ 2 ∑ j ⟨ ϕ j ∣ ∇ 2 ∣ ϕ j ⟩
Basis functions
Atoms and molecules
[STO] Slater Type Orbitals : ψ n l m i ( r , θ , ϕ ) ∝ r n − 1 e − ξ i r Y l m ( θ , ϕ ) \psi^i_{nlm}(r,\theta,\phi)\propto r^{n-1}e^{-\xi_ir}Y_{lm}(\theta,\phi) ψ n l m i ( r , θ , ϕ ) ∝ r n − 1 e − ξ i r Y l m ( θ , ϕ )
two nuclei no closed form
[GTO] Gauss Type Orbitals : ψ n l m i ( r ⃗ ) ∝ x l y m z n e − ξ i r 2 \psi_{nlm}^i(\vec r) \propto x^ly^mz^n e^{-\xi_ir^2} ψ n l m i ( r ) ∝ x l y m z n e − ξ i r 2
gaussian product still gaussian easy to integral
Free electron gas
H ^ = − ∑ i = 1 N e ℏ 2 2 m ∇ r ⃗ i 2 ⏟ T ^ + e 2 ∑ i < j 1 ∣ r ⃗ − r ⃗ ′ ∣ ⏟ V e e \hat H = - \underbrace{\sum_{i=1}^{N_e}\frac{\hbar^2}{2m}\nabla^2_{\vec r_i}}_{\hat T}+\underbrace{e^2\sum_{i<j}\frac{1}{|\vec r-\vec r'|}}_{V_{ee}}
H ^ = − T ^ i = 1 ∑ N e 2 m ℏ 2 ∇ r i 2 + V ee e 2 i < j ∑ ∣ r − r ′ ∣ 1
plane waves basis : ψ k ⃗ ( r ⃗ ) = exp ( − i k ⃗ ⋅ r ⃗ ) \psi_{\vec k}(\vec r) = \text{exp}(-i\vec k\cdot \vec r) ψ k ( r ) = exp ( − i k ⋅ r )
low temperature : Wigner crystal
better basis will be eigenfunctions of harmonic oscillatiors centered around
Pseudo-potentials
only model outer shell with basis, use pseudo potential to model inner shell since they are not involved in chemical bond
Quantum Computing
Quantum Computer
quantum gates
measurement : ∣ ⟨ z 1 z 2 … ∣ ∣ ψ ⟩ ∣ 2 |\bra{z_1z_2\dots}\ket{\psi}|^2 ∣ ⟨ z 1 z 2 … ∣ ∣ ψ ⟩ ∣ 2
repeated O ( 1000 ) \mathcal O(1000) O ( 1000 ) times
errors
coupling to environment ⇒ \Rightarrow ⇒ mixed density matrix
gate error
read out measurement error
Representing the Hilbert space
Spin-1 2 \frac{1}{2} 2 1 system : directly mapped to a qubit
Fermionic system
Jordan-Wigner Transformation : ∣ Ψ ⟩ = ∣ n N − 1 , ⋯ , n 0 ⟩ ↔ ∣ z N − 1 , ⋯ , z 0 ⟩ n i = z i \ket \Psi = \ket {n_{N-1},\cdots,n_0}\leftrightarrow \ket {z_{N-1},\cdots,z_0}\quad n_i=z_i ∣ Ψ ⟩ = ∣ n N − 1 , ⋯ , n 0 ⟩ ↔ ∣ z N − 1 , ⋯ , z 0 ⟩ n i = z i
c ^ i ↔ A i Z i − 1 ⋯ Z 0 c ^ i † ↔ A i † Z i − 1 ⋯ Z 0 A i = ( X i + i Y i ) 2 \hat c_i \leftrightarrow A_iZ_{i-1}\cdots Z_0\quad \hat c^\dagger_i \leftrightarrow A_i^\dagger Z_{i-1}\cdots Z_0\quad A_i = \frac{(X_i+iY_i)}{2} c ^ i ↔ A i Z i − 1 ⋯ Z 0 c ^ i † ↔ A i † Z i − 1 ⋯ Z 0 A i = 2 ( X i + i Y i )
measuring parity requires O ( N ) \mathcal O(N) O ( N ) operators
updating an occupation number requires O ( 1 ) \mathcal O(1) O ( 1 ) operators
Parity Encoding : ∣ Ψ ⟩ = ∣ n N − 1 , ⋯ , n 0 ⟩ ↔ ∣ z N − 1 , ⋯ , z 0 ⟩ z i = [ ∑ j = 0 i n i ] mod 2 \ket \Psi = \ket {n_{N-1},\cdots,n_0}\leftrightarrow \ket {z_{N-1},\cdots,z_0}\quad z_i = \left[\sum_{j=0}^in_i\right]\text{mod}~2 ∣ Ψ ⟩ = ∣ n N − 1 , ⋯ , n 0 ⟩ ↔ ∣ z N − 1 , ⋯ , z 0 ⟩ z i = [ ∑ j = 0 i n i ] mod 2
c ^ i ↔ X N − 1 ⋯ X i + 1 ( X i Z i − 1 + i Y i ) c ^ i † ↔ X N − 1 ⋯ X i + 1 ( X i Z i − 1 − i Y i ) \hat c_i \leftrightarrow X_{N-1}\cdots X_{i+1}(X_iZ_{i-1}+iY_i)\quad \hat c^\dagger _i \leftrightarrow X_{N-1}\cdots X_{i+1}(X_iZ_{i-1}-iY_i) c ^ i ↔ X N − 1 ⋯ X i + 1 ( X i Z i − 1 + i Y i ) c ^ i † ↔ X N − 1 ⋯ X i + 1 ( X i Z i − 1 − i Y i )
measuring parity requires O ( 1 ) \mathcal O(1) O ( 1 ) operators
updating an occupation requires O ( N ) \mathcal O(N) O ( N ) operators
Bravyi-Kitaev : a hypbrid of Parity and Jordan-Wigner
Notation
n i n_i n i : fermionic orbitals/site occupation number n i ∈ { 0 , 1 } n_i\in \{0,1\} n i ∈ { 0 , 1 }
c ^ i , c ^ i † \hat c_i, \hat c_i^\dagger c ^ i , c ^ i † : creation operator, annihilation operator
Variational quantum solver
extract the spectrum of an operator
[QFT] Quantum fourier transform
exact solution
vast number of gate operations
[VQE] Variational Quantum Eigensolver : min θ ⟨ Ψ ( θ ) ∣ H ^ ∣ Ψ ( θ ) ⟩ ⟨ Ψ ( θ ) ∣ ∣ Ψ ( θ ) ⟩ \underset{\theta}{\text{min}}\frac{\bra{\Psi(\theta)}\hat H\ket{\Psi(\theta)}}{\bra{\Psi(\theta)}\ket{\Psi(\theta)}} θ min ⟨ Ψ ( θ ) ∣ ∣ Ψ ( θ ) ⟩ ⟨ Ψ ( θ ) ∣ H ^ ∣ Ψ ( θ ) ⟩
quantum computer : expectation evaluation
classical computer : optimization COBYLA (no SGD since no gradient)
[UCC] Unitary Coupled Cluster : ∣ Ψ ( θ ) ⟩ = e T ^ ( θ ) − T ^ † ( θ ) ∣ Ψ 0 ⟩ \ket {\Psi(\theta)} = e^{\hat T(\theta)-\hat T^\dagger(\theta)}\ket{\Psi_0} ∣ Ψ ( θ ) ⟩ = e T ^ ( θ ) − T ^ † ( θ ) ∣ Ψ 0 ⟩
a good choice for variational state
huge circuit depth
much depend on the choice of state ∣ Φ 0 ⟩ \ket{\Phi_0} ∣ Φ 0 ⟩
[UCCSD] Unitary Coupled Cluster with Single and Double excitation
T ^ ( θ ) ≈ T ^ 1 ( θ 1 ) + T ^ 2 ( θ 2 ) \hat T(\theta) \approx \hat T_1(\theta_1)+\hat T_2(\theta_2) T ^ ( θ ) ≈ T ^ 1 ( θ 1 ) + T ^ 2 ( θ 2 )
T ^ 1 ( θ 1 ) = ∑ i , j θ 1 , i , j c ^ i † c ^ j \hat T_1(\theta_1)=\sum_{i,j}\theta_{1,i,j}\hat c^\dagger_i\hat c_j T ^ 1 ( θ 1 ) = ∑ i , j θ 1 , i , j c ^ i † c ^ j
T ^ 2 ( θ 2 ) = ∑ i , j θ 2 , i , j , k , l c ^ i † c ^ k † c ^ j c ^ l \hat T_2(\theta_2) = \sum_{i,j}\theta_{2,i,j,k,l}\hat c^\dagger_i\hat c^\dagger_k\hat c_j\hat c_l T ^ 2 ( θ 2 ) = ∑ i , j θ 2 , i , j , k , l c ^ i † c ^ k † c ^ j c ^ l
Notation
T ^ ( θ ) \hat T(\theta) T ^ ( θ ) : excitation operator
∣ Ψ 0 ⟩ \ket {\Psi_0} ∣ Ψ 0 ⟩ : Hartree-Fock/single Slater detereminant state