Robotic Dynamics


Lecturer : Marco Hutter


 

Kinematics

position

linear velocity

r˙=EP(χP)χ˙Pχ˙P=EP1(χP)r˙

rotation

 

angular velocity

AωAB=ER(χR)χ˙R

transformation : TAB=[CABArAB01]

transformation acceleration

 

task-space coordinate

forward Kinematics

TIE(q)=TI0k=1njTk1,k(qk)TnjE

differential Kinematics : χ˙e=JeA(q)q˙ , χ¨e=JeA(q)q¨+J˙eA(q)q˙

Inverse Differential Kinematics : q˙=Je0+we where we is (desired) end-effector velocity

Multi-task Inverse Differential Kinematics : taski={Ji,wi}

Inverse Kinematics

floating base kinematics nn=nb+nj, nb un-actuated base coordinate + nj actuated joint coordinate

Dynamics

dynamics

Generalized Equation of Motion

M(q)q¨+b(q,q˙)+g(q)=Sτ+Jc(q)Fc

Dynamics of Floating Base System

Joint Space Dynamic Control

Task Space Dynamic Control : w˙e=(r¨ω˙)=Jeq¨+J˙eq˙

Inverse Dynamics for Floating-Base Systems

 

Legged Robot

image-20240120174150659

Input : q,q˙

Optimization Target : q¨,Fc,τ

Tasks :

  1. Equation of Motion : [M(q)JcS][q¨Fcτ]=b(q˙,q)g(q)

  2. End Effector Desired Velocity we: [Je00][q¨Fcτ]=w˙eJ˙cq˙ where w˙e=kp(rere)kd(wewe)

  3. Torque minimize : [00I][q¨Fcτ]=0

  4. Torque limits : [00I][q¨Fcτ]1τmax and [00I][q¨Fcτ]1τmax

  5. Contact Force minimize : [0I0][q¨Fcτ]=0

  6. Friction Cone : [0[011μ1μ]00[011μ1μ]0][q¨Fcτ]0 for 2D xz problem

Optimization

[HO]Hierarchical Least Square Optimization

 

Rotorcrafts

image-20240120204547182

quadrotor_force

quadrotor_control

[mI00Θ]M[ν˙ω˙]q¨+[ω×mνω×Θω]b=[FMtorque]τ
BF=CIB I[00mg]BFG+i=14 B[00Ti]BFAero
BM=B[l(T4T2)l(T1T3)0]BMT+B[00i=14Qi(1)i]BQ

 

Control of Quadrotor

Θxxp˙=qr(ΘyyΘzz)+U2(1)Θyyq˙=rp(ΘzzΘxx)+U3(2)Θzzr˙=U4(3)mu˙=m(rvqw)sinθ mg(4)mv˙=m(pwru)+sinϕcosθ mg(5)mw˙=m(qupv)+cosϕcosθ mgU1(6)
[U1U2U3U4]=[bbbb0lb0lblb0lb0dddd]A[ωp,12ωp,22ωp,32ωp,42]

rotorcraft_hierarchicachy_control

Hexacopter

image-20240123125813855

A=(bbbbbbbls30blbls30bls30blbls30blc300blc30blc300blc30dddddd)

MAV Control

image-20240123125940855

  1. Bωref=PID(Bνref,Bν)

  2. U1=mg[U2,U3,U4]=PID(Bωref, Bω, Bω˙)

  3. ωp2=A+[U1U2U3U4]

Propeller Aerodynamics

propeller

blade

[BEMT]Blade Elemental and Momentum Theory : calculate forces for each element and sum them up

image-20240122194332353

Fixed-Wing

control_surface

fixed_wing_main_view

fixed_wing_front_side_view

fixed_wing_top_view

image-20240122170251935

image-20240122170316297

Steady Level Turning Flight

fixed_wing_turning

Lcosϕ=mgLsinϕ=mV2R=mRξ˙D=Tξ˙=gtanϕVL1cosϕV1cosϕ

L1 Guidance

L1_guidance

as=V2R=2V2sinηL1ϕ˙ξ˙=ϕd=atan(asg)

Total Energy Control System

energy_control

 

Modeling for Control (Linearized Plant)

 

 

Statements

Kinematics

Dynamics

Legged Robot

Rotor Craft

Fixed Wing