[IAM]Climate Economics and Finance

[IAM]Climate Economics and Finance

Nordhaus Dynamic Integrated model of Climate and Economy (DICE) Model

Ft=ηlog2(MAT,tMAT,1750)+FtAbate+FtExF_t = \eta\cdot \log_2\left(\frac{M_{AT,t}}{M_{AT,1750}}\right) + F_t^{\text{Abate}} + F_t^{\text{Ex}}

  • FtF_t : increased radiative forcing
  • MAT,tM_{AT,t} : increased atmospheric carbon concentrations
  • FtAbateF_t^{\text{Abate}} : non-CO2 forcing net of abatement
  • FtExF_t^{\text{Ex}}​ : exogenous forcing
  • D(Tt)D(T_t)​ : damage function

YtNet=(1Λt(μt))left after abatement[(1D(Tt))left after damageYtGrossgross output]Y_t^{\text{Net}} = \underbrace{(1-\Lambda_t(\mu_t))}_{\text{left after abatement}}\cdot [\underbrace{(1-D(T_t))}_{\text{left after damage}}\cdot \underbrace{Y_t^{\text{Gross}}}_{\text{gross output}}]

Implications :

  • reduce emission μt\mu_t\downarrow costs money today, but reduce climate damages in the future TtT_t\downarrow

r=ρ+ϕg+βCLIMπσc2ϕ2(0.5)r = \rho + \phi g^* +\beta^{\text{CLIM}}\pi - \sigma^2_c\phi^2(0.5)

  • ρ\rho : utility discount (patiency)
  • gg^* : consumption growth
  • ϕ\phi : utility concavity

Social Cost of Carbon

SCCt=jLt+j(11+ρ)jΔu(ct+j)Δu(ct)ΔYt+jΔTt+jΔTt+jΔEt\text{SCC}_t =\sum_j L_{t+j}\left(\frac{1}{1+\rho}\right)^j \frac{\Delta u(c_{t+j})}{\Delta u(c_t)} \frac{\Delta Y_{t+j}}{\Delta T_{t+j}}\frac{\Delta T_{t+j}}{\Delta E_t}

  • LtL_t : population
  • ρ\rho : utility discount factor

Panel

linear

Economic growthi,t=βTemperaturei,t+Controlsi,t+εi,t\text{Economic growth}_{i,t} = \beta \cdot \text{Temperature}_{i,t}+\text{Controls}_{i,t}+\varepsilon_{i,t}

nonlinear

Outcomei,t=β1Tempi,t+β2(Tempi,t)2+Controlsi,t+εi,t\text{Outcome}_{i,t} = \beta_1\cdot \text{Temp}_{i,t}+\beta_2\cdot (\text{Temp}_{i,t})^2 + \text{Controls}_{i,t} + \varepsilon_{i,t}

Heterogeneous

Outcomei,t=β1Tempi,t+β2(Tempi,tClimatei)+Controlsi,t+ϵi,t\text{Outcome}_{i,t} = \beta_1\cdot \text{Temp}_{i,t} + \beta_2\cdot\left(\text{Temp}_{i,t}\cdot \text{Climate}_{i}\right)+\text{Controls}_{i,t}+\epsilon_{i,t}

Cyclones and Growth

Marginal Abatement cost function

Social Cost of Carbon & Excel-based IAM

  • temperature change: Tt=ηlog2(MAT,tMAT,1750)T_t = \eta\cdot \log_2\left(\frac{M_{AT,t}}{M_{AT,1750}}\right)
    • η\eta : temperature sensitivity
    • MAT,tM_{AT,t} : total amount of CO2 at time tt
    • MAT,1750M_{AT,1750} : total amount of CO2 before industry
  • damage function : DamagetGDPt=ψ1Ttψ2\frac{\text{Damage}_t}{\text{GDP}_t} = \psi_1 T_t^{\psi_2}
    • ψ1,ψ2\psi_1,\psi_2 : parameters
    • TtT_t : temperature change
  • Present Value(PV) of damage : 5Damaget(1+r)tt0\frac{5\cdot \text{Damage}_t}{(1+r)^{t-t_0}}
  • Present Value Total(PVT) of damage : t5Damaget(1+r)tt0\sum_{t}\frac{5\cdot \text{Damage}_t}{(1+r)^{t-t_0}}
  • Total abatement cost (TAC) : TACtGDPt=θ1(1+g)tt0μθ2\frac{\text{TAC}_t}{\text{GDP}_t}=\theta_1\cdot (1+g)^{t-t_0}\mu^{\theta_2}
    • θ1,θ2,g\theta_1,\theta_2,g : abatement parameters
    • μ\mu : percentage emission reduction
  • PV of TAC : 5TACt(1+r)tt0\frac{5\cdot \text{TAC}_t}{(1+r)^{t-t_0}}
  • utility function: u(ct)=ct1ϕ1ϕu(c_t) = \frac{c_t^{1-\phi}}{1-\phi}
    • ct=GDPtNetPopulationtc_t = \frac{\text{GDP}_t^{\text{Net}}}{\text{Population}_t}
    • ϕ\phi : utility parameters
  • PV of social welfare : PVSWt=Ltu(ct)(11+ρ)tt0\text{PVSW}_t = L_t\cdot u(c_t)\cdot \left(\frac{1}{1+\rho}\right)^{t-t_0}
    • ρ\rho : utility discount factor
    • LtL_t : population
  • Social Cost of Carbon (SCC) : SCC=PVT of damageΔS\text{SCC} = \frac{\text{PVT of damage}}{\Delta S}

Lucas Tree Asset Pricing Model

Pt=Et[j=1βj(u(dt+j)u(dt))dt+j]P_t = \mathbb E_t\left[\sum_{j=1}^\infin \beta^j\left(\frac{u'(d_{t+j})}{u'(d_t)}\right)\cdot d_{t+j}\right]

  • β\beta : impatience
  • u()u'(\cdot) : marginal utility of income
  • PtP_t​ : price of the stock
  • dt+jd_{t+j} : dividends(股息)

Consumption Capital Asset Pricing Model(CCAPM)

u(ct)Marginal Cost(MC)=βEt[u(ct+1)(1+rf,t+1)]Marginal Benefit(MB)\underbrace{u'(c_t)}_{\text{Marginal Cost(MC)}} = \underbrace{\beta\cdot \mathbb E_t\left[u'(c_{t+1})(1+r_{f,t+1})\right]}_{\text{Marginal Benefit(MB)}}

Et(rj,t+1)rf,t+1=(1+rf,t+1)Cov[u(ct+1)u(ct),rj,t+1]\mathbb E_t(r_{j,t+1}) - r_{f,t+1} = -(1+r_{f,t+1})\cdot \text{Cov}\left[\frac{u'(c_{t+1})}{u'(c_t)},r_{j,t+1}\right]

  • rf,t+1r_{f,t+1}​ : risk free rate
  • u(ct+1)u'(c_{t+1})​ : marginal utility of consumption
  • Et(rj,t+1)\mathbb E_t(r_{j,t+1})​ : expected return value
  • ctc_t : consumption at time tt

Implications :

  • Cov[u(ct+1)u(ct),rj,t+1]<0rc1urisk\text{Cov}\left[\frac{u'(c_{t+1})}{u'(c_t)},r_{j,t+1}\right]<0 \Leftrightarrow r\propto c\propto \frac{1}{u}\Leftrightarrow \text{risk}\uparrow
  • Cov[u(ct+1)u(ct),rj,t+1]>0ru1crisk\text{Cov}\left[\frac{u'(c_{t+1})}{u'(c_t)},r_{j,t+1}\right]>0 \Leftrightarrow r\propto u \propto \frac{1}{c}\Leftrightarrow \text{risk}\downarrow
  • CCAPM implies that we should value carbon abatement relatively more

Efficient Market Hypothesis (EMH)

key idea : Asset prices reflect all available information about their value

Implications :

  • Stock price movements random (walks)
  • Trade-off between risk and expected return
  • Known climate risks should already be priced into asset value

Balance Sheet

Total Assets=Total Liabilities+Stockholders’ equity\text{Total Assets} = \text{Total Liabilities} + \text{Stockholders' equity}

Concept:

  • Asset: something owned by the bank
    • Examples: bank reserves, cash equivalents, long-term investment
  • Liability: something owed to another institution or person
    • demanded deposits(活期存款), short-term borrowing, long-term debts
  • Stockholders’ equity

Example

Assets Amount Liabilities and Stockholders’ Equity Amount
Reserves $74 Demand deposits $935
Cash equivalents $274 Short-term borrowing $429
Long-term investments $1,453 Long-term debt $208
Total assets $1,801 Total liabilities $1,572
Stockholders’ equity $229
Total liabilities + Stockholders’ equity $1,801

Bank

  • Identify profitable lending opportunities : savers & borrowers
  • Maturity Transformation : short-term liabilities into long-term investments
  • Risk Management :
    • insolvent(资不抵债) : Stockholders’ equity > 0, loss of value in long-term investment
    • fire sale: too many depositors withdraw deposits at the same time, banks sell illiquid

Implications :

  • risklong-term investments\text{risk}\uparrow\Leftrightarrow \text{long-term investments}\downarrow​ : As long as stockholders’ equity is positive, this loss “comes out of” stockholders’ equity
  • If The Efficient Markets Hypothesis holds and climate change turns out to be as expected, we would NOT expect physical climate impacts to pose a risk to bank solvency in the future.

[IAM]Climate Economics and Finance
https://walkerchi.github.io/2024/06/03/ETHz/ETHz-IAM/
Author
walkerchi
Posted on
June 3, 2024
Licensed under