[IAM]Climate Economics and Finance
Nordhaus Dynamic Integrated model of Climate and Economy (DICE) Model
F t = η ⋅ log 2 ( M A T , t M A T , 1750 ) + F t Abate + F t Ex F_t = \eta\cdot \log_2\left(\frac{M_{AT,t}}{M_{AT,1750}}\right) + F_t^{\text{Abate}} + F_t^{\text{Ex}}
F t = η ⋅ log 2 ( M A T , 1750 M A T , t ) + F t Abate + F t Ex
F t F_t F t : increased radiative forcing
M A T , t M_{AT,t} M A T , t : increased atmospheric carbon concentrations
F t Abate F_t^{\text{Abate}} F t Abate : non-CO2 forcing net of abatement
F t Ex F_t^{\text{Ex}} F t Ex : exogenous forcing
D ( T t ) D(T_t) D ( T t ) : damage function
Y t Net = ( 1 − Λ t ( μ t ) ) ⏟ left after abatement ⋅ [ ( 1 − D ( T t ) ) ⏟ left after damage ⋅ Y t Gross ⏟ gross output ] Y_t^{\text{Net}} = \underbrace{(1-\Lambda_t(\mu_t))}_{\text{left after abatement}}\cdot [\underbrace{(1-D(T_t))}_{\text{left after damage}}\cdot \underbrace{Y_t^{\text{Gross}}}_{\text{gross output}}]
Y t Net = left after abatement ( 1 − Λ t ( μ t )) ⋅ [ left after damage ( 1 − D ( T t )) ⋅ gross output Y t Gross ]
Implications :
reduce emission μ t ↓ \mu_t\downarrow μ t ↓ costs money today, but reduce climate damages in the future T t ↓ T_t\downarrow T t ↓
r = ρ + ϕ g ∗ + β CLIM π − σ c 2 ϕ 2 ( 0.5 ) r = \rho + \phi g^* +\beta^{\text{CLIM}}\pi - \sigma^2_c\phi^2(0.5)
r = ρ + ϕ g ∗ + β CLIM π − σ c 2 ϕ 2 ( 0.5 )
ρ \rho ρ : utility discount (patiency)
g ∗ g^* g ∗ : consumption growth
ϕ \phi ϕ : utility concavity
Social Cost of Carbon
SCC t = ∑ j L t + j ( 1 1 + ρ ) j Δ u ( c t + j ) Δ u ( c t ) Δ Y t + j Δ T t + j Δ T t + j Δ E t \text{SCC}_t =\sum_j L_{t+j}\left(\frac{1}{1+\rho}\right)^j \frac{\Delta u(c_{t+j})}{\Delta u(c_t)} \frac{\Delta Y_{t+j}}{\Delta T_{t+j}}\frac{\Delta T_{t+j}}{\Delta E_t}
SCC t = j ∑ L t + j ( 1 + ρ 1 ) j Δ u ( c t ) Δ u ( c t + j ) Δ T t + j Δ Y t + j Δ E t Δ T t + j
L t L_t L t : population
ρ \rho ρ : utility discount factor
Panel
linear
Economic growth i , t = β ⋅ Temperature i , t + Controls i , t + ε i , t \text{Economic growth}_{i,t} = \beta \cdot \text{Temperature}_{i,t}+\text{Controls}_{i,t}+\varepsilon_{i,t}
Economic growth i , t = β ⋅ Temperature i , t + Controls i , t + ε i , t
nonlinear
Outcome i , t = β 1 ⋅ Temp i , t + β 2 ⋅ ( Temp i , t ) 2 + Controls i , t + ε i , t \text{Outcome}_{i,t} = \beta_1\cdot \text{Temp}_{i,t}+\beta_2\cdot (\text{Temp}_{i,t})^2 + \text{Controls}_{i,t} + \varepsilon_{i,t}
Outcome i , t = β 1 ⋅ Temp i , t + β 2 ⋅ ( Temp i , t ) 2 + Controls i , t + ε i , t
Heterogeneous
Outcome i , t = β 1 ⋅ Temp i , t + β 2 ⋅ ( Temp i , t ⋅ Climate i ) + Controls i , t + ϵ i , t \text{Outcome}_{i,t} = \beta_1\cdot \text{Temp}_{i,t} + \beta_2\cdot\left(\text{Temp}_{i,t}\cdot \text{Climate}_{i}\right)+\text{Controls}_{i,t}+\epsilon_{i,t}
Outcome i , t = β 1 ⋅ Temp i , t + β 2 ⋅ ( Temp i , t ⋅ Climate i ) + Controls i , t + ϵ i , t
Cyclones and Growth
Marginal Abatement cost function
Social Cost of Carbon & Excel-based IAM
temperature change: T t = η ⋅ log 2 ( M A T , t M A T , 1750 ) T_t = \eta\cdot \log_2\left(\frac{M_{AT,t}}{M_{AT,1750}}\right) T t = η ⋅ log 2 ( M A T , 1750 M A T , t )
η \eta η : temperature sensitivity
M A T , t M_{AT,t} M A T , t : total amount of CO2 at time t t t
M A T , 1750 M_{AT,1750} M A T , 1750 : total amount of CO2 before industry
damage function : Damage t GDP t = ψ 1 T t ψ 2 \frac{\text{Damage}_t}{\text{GDP}_t} = \psi_1 T_t^{\psi_2} GDP t Damage t = ψ 1 T t ψ 2
ψ 1 , ψ 2 \psi_1,\psi_2 ψ 1 , ψ 2 : parameters
T t T_t T t : temperature change
Present Value(PV) of damage : 5 ⋅ Damage t ( 1 + r ) t − t 0 \frac{5\cdot \text{Damage}_t}{(1+r)^{t-t_0}} ( 1 + r ) t − t 0 5 ⋅ Damage t
Present Value Total(PVT) of damage : ∑ t 5 ⋅ Damage t ( 1 + r ) t − t 0 \sum_{t}\frac{5\cdot \text{Damage}_t}{(1+r)^{t-t_0}} ∑ t ( 1 + r ) t − t 0 5 ⋅ Damage t
Total abatement cost (TAC) : TAC t GDP t = θ 1 ⋅ ( 1 + g ) t − t 0 μ θ 2 \frac{\text{TAC}_t}{\text{GDP}_t}=\theta_1\cdot (1+g)^{t-t_0}\mu^{\theta_2} GDP t TAC t = θ 1 ⋅ ( 1 + g ) t − t 0 μ θ 2
θ 1 , θ 2 , g \theta_1,\theta_2,g θ 1 , θ 2 , g : abatement parameters
μ \mu μ : percentage emission reduction
PV of TAC : 5 ⋅ TAC t ( 1 + r ) t − t 0 \frac{5\cdot \text{TAC}_t}{(1+r)^{t-t_0}} ( 1 + r ) t − t 0 5 ⋅ TAC t
utility function: u ( c t ) = c t 1 − ϕ 1 − ϕ u(c_t) = \frac{c_t^{1-\phi}}{1-\phi} u ( c t ) = 1 − ϕ c t 1 − ϕ
c t = GDP t Net Population t c_t = \frac{\text{GDP}_t^{\text{Net}}}{\text{Population}_t} c t = Population t GDP t Net
ϕ \phi ϕ : utility parameters
PV of social welfare : PVSW t = L t ⋅ u ( c t ) ⋅ ( 1 1 + ρ ) t − t 0 \text{PVSW}_t = L_t\cdot u(c_t)\cdot \left(\frac{1}{1+\rho}\right)^{t-t_0} PVSW t = L t ⋅ u ( c t ) ⋅ ( 1 + ρ 1 ) t − t 0
ρ \rho ρ : utility discount factor
L t L_t L t : population
Social Cost of Carbon (SCC) : SCC = PVT of damage Δ S \text{SCC} = \frac{\text{PVT of damage}}{\Delta S} SCC = Δ S PVT of damage
Lucas Tree Asset Pricing Model
P t = E t [ ∑ j = 1 ∞ β j ( u ′ ( d t + j ) u ′ ( d t ) ) ⋅ d t + j ] P_t = \mathbb E_t\left[\sum_{j=1}^\infin \beta^j\left(\frac{u'(d_{t+j})}{u'(d_t)}\right)\cdot d_{t+j}\right]
P t = E t [ j = 1 ∑ ∞ β j ( u ′ ( d t ) u ′ ( d t + j ) ) ⋅ d t + j ]
β \beta β : impatience
u ′ ( ⋅ ) u'(\cdot) u ′ ( ⋅ ) : marginal utility of income
P t P_t P t : price of the stock
d t + j d_{t+j} d t + j : dividends(股息)
Consumption Capital Asset Pricing Model(CCAPM)
u ′ ( c t ) ⏟ Marginal Cost(MC) = β ⋅ E t [ u ′ ( c t + 1 ) ( 1 + r f , t + 1 ) ] ⏟ Marginal Benefit(MB) \underbrace{u'(c_t)}_{\text{Marginal Cost(MC)}} = \underbrace{\beta\cdot \mathbb E_t\left[u'(c_{t+1})(1+r_{f,t+1})\right]}_{\text{Marginal Benefit(MB)}}
Marginal Cost(MC) u ′ ( c t ) = Marginal Benefit(MB) β ⋅ E t [ u ′ ( c t + 1 ) ( 1 + r f , t + 1 ) ]
E t ( r j , t + 1 ) − r f , t + 1 = − ( 1 + r f , t + 1 ) ⋅ Cov [ u ′ ( c t + 1 ) u ′ ( c t ) , r j , t + 1 ] \mathbb E_t(r_{j,t+1}) - r_{f,t+1} = -(1+r_{f,t+1})\cdot \text{Cov}\left[\frac{u'(c_{t+1})}{u'(c_t)},r_{j,t+1}\right]
E t ( r j , t + 1 ) − r f , t + 1 = − ( 1 + r f , t + 1 ) ⋅ Cov [ u ′ ( c t ) u ′ ( c t + 1 ) , r j , t + 1 ]
r f , t + 1 r_{f,t+1} r f , t + 1 : risk free rate
u ′ ( c t + 1 ) u'(c_{t+1}) u ′ ( c t + 1 ) : marginal utility of consumption
E t ( r j , t + 1 ) \mathbb E_t(r_{j,t+1}) E t ( r j , t + 1 ) : expected return value
c t c_t c t : consumption at time t t t
Implications :
Cov [ u ′ ( c t + 1 ) u ′ ( c t ) , r j , t + 1 ] < 0 ⇔ r ∝ c ∝ 1 u ⇔ risk ↑ \text{Cov}\left[\frac{u'(c_{t+1})}{u'(c_t)},r_{j,t+1}\right]<0 \Leftrightarrow r\propto c\propto \frac{1}{u}\Leftrightarrow \text{risk}\uparrow Cov [ u ′ ( c t ) u ′ ( c t + 1 ) , r j , t + 1 ] < 0 ⇔ r ∝ c ∝ u 1 ⇔ risk ↑
Cov [ u ′ ( c t + 1 ) u ′ ( c t ) , r j , t + 1 ] > 0 ⇔ r ∝ u ∝ 1 c ⇔ risk ↓ \text{Cov}\left[\frac{u'(c_{t+1})}{u'(c_t)},r_{j,t+1}\right]>0 \Leftrightarrow r\propto u \propto \frac{1}{c}\Leftrightarrow \text{risk}\downarrow Cov [ u ′ ( c t ) u ′ ( c t + 1 ) , r j , t + 1 ] > 0 ⇔ r ∝ u ∝ c 1 ⇔ risk ↓
CCAPM implies that we should value carbon abatement relatively more
Efficient Market Hypothesis (EMH)
key idea : Asset prices reflect all available information about their value
Implications :
Stock price movements random (walks)
Trade-off between risk and expected return
Known climate risks should already be priced into asset value
Balance Sheet
Total Assets = Total Liabilities + Stockholders’ equity \text{Total Assets} = \text{Total Liabilities} + \text{Stockholders' equity}
Total Assets = Total Liabilities + Stockholders’ equity
Concept :
Asset : something owned by the bank
Examples: bank reserves, cash equivalents, long-term investment
Liability : something owed to another institution or person
demanded deposits(活期存款), short-term borrowing, long-term debts
Stockholders’ equity
Example
Assets
Amount
Liabilities and Stockholders’ Equity
Amount
Reserves
$74
Demand deposits
$935
Cash equivalents
$274
Short-term borrowing
$429
Long-term investments
$1,453
Long-term debt
$208
Total assets
$1,801
Total liabilities
$1,572
Stockholders’ equity
$229
Total liabilities + Stockholders’ equity
$1,801
Bank
Identify profitable lending opportunities : savers & borrowers
Maturity Transformation : short-term liabilities into long-term investments
Risk Management :
insolvent(资不抵债) : Stockholders’ equity > 0, loss of value in long-term investment
fire sale: too many depositors withdraw deposits at the same time, banks sell illiquid
Implications :
risk ↑ ⇔ long-term investments ↓ \text{risk}\uparrow\Leftrightarrow \text{long-term investments}\downarrow risk ↑⇔ long-term investments ↓ : As long as stockholders’ equity is positive, this loss “comes out of” stockholders’ equity
If The Efficient Markets Hypothesis holds and climate change turns out to be as expected, we would NOT expect physical climate impacts to pose a risk to bank solvency in the future.