Quantum Information Processing:Concept

QIP1Quantum Information Processing:Concept

professor : Jonathan Home
author : walkerchi

Quantum State

  • unitary : SS=SS=IS^\dagger S = SS^\dagger= I
  • Hermitian : S=SS^\dagger=S
  • projector : SS=SSS=S
  • \otimes : tensor product

Bloch Sphere

ψ=α0+β1α2+β2=1=cos(θ/2)0+eiϕsin(θ/2)1=cos(θ/2)0+(cosϕ+i sinϕ)sin(θ/2)1\begin{aligned} \ket \psi &=\alpha \ket 0 + \beta \ket 1 & \Vert \alpha \Vert^2 + \Vert \beta \Vert^2 = 1\\ &= \text{cos}(\theta/2)\ket 0 + e^{i\phi}\text{sin}(\theta/2)\ket 1 \\ &= \text{cos}(\theta/2)\ket 0 + (\text{cos}\phi + i~\text{sin}\phi) \text{sin}(\theta/2)\ket 1 \end{aligned}

img
  • zz axis : 0=[10]1=[01]\ket 0 = \begin{bmatrix}1\\0\end{bmatrix}\quad \ket 1 = \begin{bmatrix}0\\1\end{bmatrix}

  • xx axis : +=12[11]=12[11]\ket + = \frac{1}{\sqrt 2}\begin{bmatrix}1\\1\end{bmatrix}\quad \ket - = \frac{1}{\sqrt 2}\begin{bmatrix}1\\-1\end{bmatrix}

  • yy axis : +y=12[1i]y=12[1i]\ket +_y=\frac{1}{\sqrt 2}\begin{bmatrix}1\\i\end{bmatrix}\quad\ket -_y= \frac{1}{\sqrt 2}\begin{bmatrix}1\\-i\end{bmatrix}

    pauli matrices : σ^x=[0110]σ^y=[0ii0]σ^z=[1001]\hat \sigma_x = \begin{bmatrix}0&1\\1&0\end{bmatrix}\quad \hat \sigma_y=\begin{bmatrix}0&-i\\i&0\end{bmatrix}\quad \hat \sigma_z = \begin{bmatrix}1&0\\0&-1\end{bmatrix}

No-cloning theorem

∄U^ ψ,ϕU(ψ0)=ψψU(ϕ0)=ϕϕ\not \exists \hat U ~\forall \psi,\phi \quad U(\ket \psi\otimes \ket 0) = \ket \psi \otimes \ket\psi\quad U(\ket\phi\otimes \ket 0)=\ket \phi\otimes\ket \phi

Entanglement

ΨABαAβB\ket {\Psi}_{AB} \neq \ket \alpha_A \otimes \ket \beta_B

  • Bell states : maximally entangled states for two qubits

Φ+=12(00+11)Ψ+=12(01+10)Φ=12(0011)Ψ=12(0110)\begin{matrix} \ket {\Phi^+} = \frac{1}{\sqrt 2}(\ket {00}+\ket {11})& \ket {\Psi^+} = \frac{1}{\sqrt 2}(\ket {01}+\ket {10})\\ \ket {\Phi^-} = \frac{1}{\sqrt 2}(\ket {00} - \ket {11})& \ket {\Psi^-} = \frac{1}{\sqrt 2}(\ket {01} - \ket {10}) \end{matrix}

  • identify entanglement : more than 1 non-zero eigen values λ1,λ20\exist \lambda_1,\lambda_2 \neq 0

  • product state : ΨAB=αAβB\ket \Psi_{AB} = \ket \alpha_A \otimes \ket \beta_B no entanglement

  • Schmidt decomposition : ΨH1H2Ψ=i=1mλiuiviuiH1,viH2\ket\Psi\in \mathcal H_1\otimes \mathcal H_2\to \ket\Psi = \sum_{i=1}^m \lambda_i\ket {u_i}\otimes \ket{v_i}\quad \ket {u_i}\in \mathcal H_1,\ket{v_i}\in \mathcal H_2

    • Schmidt rank : mm

      • independent from the choice of basis of HA\mathcal H_A and HB\mathcal H_B
    • Schmidt coefficient : αi\alpha_i

      Example

      Ψ=00+11+2++10=300+201+210+31110\Psi = \frac{\ket {00}+\ket{11}+2\ket{++}}{\sqrt {10}} = \frac{3\ket{00}+2\ket{01}+2\ket{10}+3\ket{11}}{\sqrt{10}}

      schmidt rank : 44

      schmidt coefficient : 110[3,2,2,3]\frac{1}{\sqrt{10}}[3,2,2,3]

Bell Inequality

location AA location BB
CHSH inequatlity Q=±1R=±1Q=\pm 1\quad R=\pm 1 S=±1T=±1S=\pm 1\quad T=\pm 1 QS+RT+RSQT2\langle QS\rangle+\langle RT\rangle+\langle RS\rangle-\langle QT\rangle\le 2
Quantum Violation Q^=σ^zIR^=σ^xI\hat Q = \hat\sigma_z\otimes I\\\hat R=\hat \sigma_x\otimes I\\ S^=12I^(σ^z+σ^x)T^=12I^(σ^zσ^x)\hat S=\frac{-1}{\sqrt 2}\hat I\otimes(\hat \sigma_z+\hat \sigma_x)\\ \hat T = \frac{1}{\sqrt 2}\hat I\otimes (\hat \sigma_z -\hat \sigma_x) QS+RT+RSQT=22>2\langle QS\rangle+\langle RT\rangle+\langle RS\rangle-\langle QT\rangle =2\sqrt 2>2

Quantum Gate

Rotation

  • Rx(θ)=eiθX/2=cos(θ/2)Ii sin(θ/2)X=[cos(θ/2)i sin(θ/2)i sin(θ/2)cos(θ/2)]R_x(\theta) = e^{-i\theta X/2}= \text{cos}(\theta/2)I - i~sin(\theta/2)X=\begin{bmatrix}\text{cos}(\theta/2)&-i~\text{sin}(\theta/2)\\-i~\text{sin}(\theta/2)&\text{cos}(\theta/2)\end{bmatrix}
  • Ry(θ)=eiθY/2=cos(θ/2)Ii sin(θ/2)Y=[cos(θ/2) sin(θ/2)sin(θ/2)cos(θ/2)]R_y(\theta) = e^{-i\theta Y/2}= \text{cos}(\theta/2)I - i~sin(\theta/2)Y=\begin{bmatrix}\text{cos}(\theta/2)&-~\text{sin}(\theta/2)\\\text{sin}(\theta/2)&\text{cos}(\theta/2)\end{bmatrix}
  • Rz(θ)=eiθZ/2=cos(θ/2)Ii sin(θ/2)Z=[eiθ/200eiθ/2]R_z(\theta) = e^{-i\theta Z/2}= \text{cos}(\theta/2)I - i~sin(\theta/2)Z=\begin{bmatrix}e^{-i\theta/2}&0\\0&e^{i\theta/2}\end{bmatrix}

Pauli Gates

σ{x,y,z}\sigma_{\{x,y,z\}} rotate around {x,y,z}\{x,y,z\} axis by π\pi in Bloch sphere

Hadamard Gate

HH rotation about axis 12(x^+z^)\frac{1}{\sqrt 2}(\hat x +\hat z) by π\pi

  • H0=12(0+1)=+H\ket 0 = \frac{1}{\sqrt 2}(\ket 0 + \ket 1) = \ket +
  • H1=12(01)=H\ket 1 = \frac{1}{\sqrt 2}(\ket 0 - \ket 1) = \ket -
  • Hx=12(0+(1)x1)H \ket x = \frac{1}{\sqrt 2} (\ket 0 + (-1)^x\ket 1)
  • Hnx=12ny{0,1}n(1)xyyH^{\otimes n}\ket x = \frac{1}{\sqrt{2^n}}\sum_{y\in\{0,1\}^n}(-1)^{x\cdot y}\ket y

Two qubits Gate

  • CNOT=0c0cI^t+1c1cX^t\text{CNOT} = \ket 0_c\bra 0_c \otimes \hat I_t + \ket 1_c \bra 1_c \otimes \hat X_t

    img
  • CPAHSE=0c0cI^t+1c1cZ^t\text{CPAHSE} = \ket 0_c\bra0_c \otimes \hat I_t + \ket 1_c\bra 1_c\otimes \hat Z_t

    img

Matrix Table

Operator Matrix Operator Matrix Operator Matrix
Pauli-x (σx\sigma_x) [0110]\begin{bmatrix} 0 & 1 \\ 1 & 0\end{bmatrix} Pauli-Y (σy\sigma_y) [0ii0]\begin{bmatrix}0 &-i\\ i & 0\end{bmatrix} Pauli-Z (σz\sigma_z) [1001]\begin{bmatrix}1 & 0\\0 &-1\end{bmatrix}
Hadamard (HH) 12[1111]\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1\end{bmatrix} Identity (II) [1001]\begin{bmatrix}1&0\\0&1\end{bmatrix}
Phase (SS,PP) [100i]\begin{bmatrix}1 & 0 \\0 & i\end{bmatrix} π8\frac{\pi}{8} (TT, not Clifford gate) [100eiπ/4]\begin{bmatrix}1 & 0 \\ 0 & e^{i\pi / 4} \end{bmatrix}
Controlled Not (CNOTCNOT, CXCX) [1000010000010010]\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\\ 0& 0 & 0 & 1\\ 0 & 0 & 1 & 0\end{bmatrix} Controlled Z (CZCZ, CSIGNCSIGN, CPHASECPHASE) [1000010000100001]\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1\end{bmatrix} SWAP [1000001001000001]\begin{bmatrix}1&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&1\end{bmatrix}

Universal quantum gates

  • Rotation gates Rx(θ),Ry(θ),Rz(θ)R_x(\theta),R_y(\theta),R_z(\theta), phase gate P(ϕ)P(\phi), CNOT
  • {CNOT,H,T}\{\text{CNOT},H,T\}
  • {CNOT}U(2)\{\text{CNOT}\}\cup \mathcal U(2)
  • {Toffoli(CCNOT),H}\{\text{Toffoli(CCNOT)},H\}

Clifford group : Cn={UU(2n):PPn:UPUPn}\mathcal C_n = \left\{U\in \mathcal U(2^n):\forall P\in\mathcal P_n:UPU^{\dagger}\in \mathcal P_n\right\} where U\mathcal U means unitary


Algorithms

Complexity

complexity class problem polynomial in time/space classical / quantum
P decision problem time classical
BPP probabilistic algorithm failure at most 13\frac{1}{3} time classical
NP proof the answer is yes time classical
PSPACE decision problem space classical
BQP decision problem failure at most 13\frac{1}{3} time quantum
  • BPPBQP\text{BPP}\subset \text{BQP} : quantum simulation of classical circuits
  • PBPP\text P\subset \text{BPP}
  • PNPPSAPCE\text P\subset \text{NP}\subset \text{PSAPCE}

Oracle

  • Phase oracle : Ufx=(1)f(x)xU_f\ket x = (-1)^{f(x)}\ket x
    img

    Ofyx=yf(x)xOfx=Of12(01)x=12(f(x)1f(x))x=(1)f(x)x\begin{aligned} O_f\ket y\ket x &= \ket {y\oplus f(x)}\ket x\\ O_f\ket -\ket x &= O_f\frac{1}{\sqrt 2}(\ket 0 - \ket 1)\ket x\\ &= \frac{1}{\sqrt 2}(\ket {f(x)} - \ket{1\oplus f(x)})\ket x\\ &= (-1)^{f(x)}\ket -\ket x \end{aligned}

  • Bit oracle : Ofyx=yf(x)xO_f\ket y\ket x = \ket {y\oplus f(x)}\ket x
    img

Deutsch-Josza

img

Distinguish f(x)f(x) whether is constant function or balanced function. O(N)O(1)\mathcal O(N) \to \mathcal O(1)

  • constant: evaluates to the same value regardless of input

  • balanced: the number of inputs which output 11 equals the number of inputs which output 00

0nHnUfHn0n=0nHnUf(12nx{0,1}nx)Hn0n=0nHn(12nx{0,1}n(1)f(x)x)=0n12nx{0,1}n(1)f(x)(12ny{0,1}n(1)xyy)=12nx,y{0,1}n(1)f(x)(1)xy0ny=12nx{0,1}n(1)f(x)={0f(x) is balanced±1f(x) is constant\begin{aligned} \bra 0 ^{\otimes n} H^{\otimes n}U_f H^{\otimes n}\ket 0^{\otimes n} &= \bra 0 ^{\otimes n}H^{\otimes n} \textcolor{orange}{U_f}\underbrace{\left(\frac{1}{\sqrt {2^n}}\sum_{x\in\{0,1\}^n}\ket x\right)}_{H^{\otimes n}\ket 0^{\otimes n}}\\ &= \bra 0 ^{\otimes n}\textcolor{cyan}{H^{\otimes n}}\left(\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}\textcolor{orange}{(-1)^{f(x)}}\ket x\right)\\ &= \bra 0 ^{\otimes n}\textcolor{cyan}{\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}}\textcolor{orange}{(-1)^{f(x)}}\left(\frac{1}{\sqrt {2^n}}\sum_{y\in\{0,1\}^n}\textcolor{cyan}{(-1)^{x\cdot y}}\ket y\right)\\ &= \frac{1}{2^n}\sum_{x, y \in\{0,1\}^n}\textcolor{orange}{(-1)^{f(x)}} (-1)^{x\cdot y} \bra {0^{\otimes n}} \ket {y}\\ & = \frac{1}{2^n}\sum_{x\in\{0,1\}^n}\textcolor{orange}{(-1)^{f(x)}}\\ &=\begin{cases} 0 & f(x)~\text{is balanced} \\ \pm 1 & f(x)~\text{is constant} \end{cases} \end{aligned}

Notation :

  1. nn : length of bit string
  2. NN : total number of quantum state N=2nN = 2^n
  3. HH : Hadamard gate

Grover

img

find the unique x0x_0 that f(x0)=1f:{1,,N}{0,1}f(x_0)=1\quad f:\{1,\cdots,N\}\to \{0,1\}, O(N)O(N)O(N)\to O(\sqrt N)

  • oracle operator : Uf=I2x0x0U0=I20n0nU_f = I - 2\ket {x_0}\bra{x_0}\quad U_0 = I -2\ket 0 ^{\otimes n}\bra 0^{\otimes n}
  • **grover diffusion **: Us=Hn(U0)Hn=2+n+nIU_s = H^{\otimes n}(-U_0)H^{\otimes n} = 2\ket {+^n}\bra{+^n} - I

Reflection

  • Reflection about ψ\ket{\psi_\perp}: Rψϕ=(I2ψψ) (αψ+βψ)=αψ+βψR_{\psi_\perp} \ket{\phi} = (I-2\ket \psi\bra\psi)~(\alpha\ket \psi +\beta \ket {\psi_\perp}) =-\alpha\ket\psi +\beta \ket {\psi_\perp}
    • Uf=Rx0U_f=R_{x_{0}^\perp} reflect about x0\ket {x_0^\perp}
  • Reflection about ψ\ket {\psi} : Rψϕ=(2ψψI) (αψ+βψ)=αψβψR_{\psi} \ket\phi =(2\ket \psi\bra\psi-I)~(\alpha\ket \psi +\beta\ket{\psi_\perp}) =\alpha\ket\psi -\beta\ket{\psi_\perp}
    • Us=R+U_s=R_{+} : reflection about +n\ket {+^n}

x0UsUfϕ=cos(arccos(x0ϕ)2arcsin(x0+))x0(UsUf)r+n=cos(arccos(x0+)2r arcsin(x0+))\begin{aligned} \bra{x_0} U_sU_f\ket \phi &= \text{cos}\left(\text{arccos}(\bra{x_0}\ket{\phi})-2\text{arcsin}(\bra{x_0}\ket {+})\right) \\ \bra{x_0}(U_sU_f)^r\ket {+^n} &= \text{cos}(\text{arccos}(\bra{x_0}\ket{+})-2r~\text{arcsin}(\bra{x_0}\ket{+})) \end{aligned}

r=arccos(1N)2 arcsin(1N)πN4\Rightarrow r = \frac{\text{arccos}(\frac{1}{\sqrt N})}{2~\text{arcsin}(\frac{1}{\sqrt N})}\approx \frac{\pi\sqrt N}{4}

Algorithm

  1. ΨHn0n\ket \Psi\gets H^{\otimes n}\ket 0^{\otimes n} : after this step Ψ=+n\ket\Psi = \ket {+^n}
  2. for rr times, r=artcos(1N)2arcsin(1N)r=\frac{\text{artcos}(\frac{1}{\sqrt N})}{2\text{arcsin}(\frac{1}{\sqrt N})}
    1. ΨUsUfΨ\ket\Psi \gets U_sU_f\ket \Psi
  3. measure Ψ\ket \Psi, the greatest probability will be x0x_0

Notation

  • nn : length of bit string
  • NN : total number of quantum state N=2nN = 2^n
  • +n=12nx={0,1}nx=1Nx={0,1}nx\ket {+^n} = \frac{1}{\sqrt {2^n}}\underset{x=\{0,1\}^n}{\sum} \ket x = \frac{1}{\sqrt N} \underset{x=\{0,1\}^n}{\sum}\ket x

[QFT] Quantum Fourier transform

img

QNx=1Ny=0N1e2πixy/NyQ_N \ket x = \frac{1}{\sqrt N}\overset{N-1}{\underset{y=0}{\sum}}e^{2\pi ixy /N}\ket y : O(NlogN)O(n2)\mathcal O(N\text{log}N)\to \mathcal O(n^2)

QNx=1Ny{0,1}ne2πixy/Ny=1Ny{0,1}ne2πixkn2kyk/Nyn1y0single bits of e2πixy/N=1Nj=1n(ynj{0,1}e2πixynj/2jynj)=1N(0n1+e.x02πi1n1)(0n2+e.x1x02πi1n2)(00+e.xn1x02πi10)=1N(Hx0)(R1Hx1)(Rn1R1Hxn1)\begin{aligned} Q_N \ket x &= \frac{1}{\sqrt N}\sum_{y\in\{0,1\}^n}e^{2\pi ixy/N}\ket y \\ &= \frac{1}{\sqrt N}\sum_{y\in\{0,1\}^n}\underbrace{e^{2\pi ix\sum_k^n 2^k y_k/N}\ket {y_{n-1}}\cdots\ket {y_0}}_{\text{single bits of } e^{2\pi i xy/ N} } \\ &= \frac{1}{\sqrt N}\otimes_{j=1}^n\left(\sum_{y_{n-j}\in\{0,1\}}e^{2\pi ixy_{n-j}/2^j}\ket{y_{n-j}}\right) \\ &=\frac{1}{\sqrt N}(\ket {0_{n-1}} + e^{.x_02\pi i}\ket {1_{n-1}})\otimes(\ket {0_{n-2}}+e^{.x_1x_0 2\pi i }\ket {1_{n-2}})\cdots(\ket {0_0}+e^{.x_{n-1}\cdots x_0 2\pi i}\ket {1_0}) \\ & = \frac{1}{\sqrt N}(H\ket {x_0})\otimes (R_1 H\ket {x_1}) \dots(R_{n-1}\dots R_1H\ket {x_{n-1}}) \end{aligned}

Number of gates in QFT of nn bit string

  • CRjCR_j (Controled-RjR_j) : n(n1)2\frac{n(n-1)}{2}
  • SWAP : n2\frac{n}{2} used to reverse the qubit, y0y1y2y3y3y2y1y0\ket{y_0y_1y_2y_3}\to\ket{y_3y_2y_1y_0}
  • HH : nn

Notation

  • nn : length of bit string
  • NN : total number of quantum state N=2nN = 2^n
  • RdR_d : rotation matrix : Rd=[100eπi/2d]R_d = \begin{bmatrix} 1 & 0\\ 0 & e^{\pi i/2^{d}} \end{bmatrix}
  • HH : Hadamard gate : H=12[1111]H = \frac{1}{\sqrt 2}\begin{bmatrix}1&1\\1&-1\end{bmatrix} Hxk=12(0+e.xk2πi1)H\ket {x_k} = \frac{1}{\sqrt 2}(\ket 0 + e^{.x_k2\pi i}\ket 1)
  • e.x1x0e^{.x_1x_0 } : e12x1+14x0e^{\frac{1}{2}x_1+\frac{1}{4}x_0}

Example

Q2=12[1111]=HQ3=13[1111e2πi/3e2πi/31e2πi/3e2πi/3]Q4=12[11111i1i11111i1i]Q_2 = \frac{1}{\sqrt 2}\begin{bmatrix} 1&1\\ 1&-1 \end{bmatrix} = H \quad Q_3 = \frac{1}{\sqrt 3}\begin{bmatrix} 1 & 1 & 1\\ 1 & e^{2\pi i/3} & e^{-2\pi i/3}\\ 1 & e^{-2\pi i /3} & e^{2\pi i /3} \end{bmatrix} \quad Q_4 = \frac{1}{2}\begin{bmatrix} 1&1&1&1\\ 1&i&-1&-i\\ 1&-1&1&-1\\ 1&-i&-1&i \end{bmatrix}

Shor factoring

img

given a non-prime integer NN represented as a bit string, find a non-trivial factor axmod Na^x\text{mod} ~N, armodN=1(ar/2+1)(ar/21)modN=0a^r\text{mod} N = 1\to(a^{r/2}+1)(a^{r/2}-1) \text{mod} N = 0

Φ=Of(idnHn)0n0n=Of1Nx{0,1}n0nx=1Nx{0,1}nf(x)xΨz=rNt=0N/r1x0+rtx:f(x)=zxΨ~z=QNΨz=rN2t=0N/r1y=0N1e2πi(x0+rt)y/Ny=rN2y=0,rymod=0N1e2πix0y/NNry=1ry=0,rymod=0N1e2πix0y/Ny\begin{aligned} \ket {\Phi} &= O_f(\text{id}^{\otimes n}\otimes H^{\otimes n})\ket {0}^{\otimes n}\ket {0}^{\otimes n} \\ &=O_f\frac{1}{\sqrt N}\sum_{x\in\{0,1\}^n}\ket {0}^{\otimes n}\ket x \\ &=\frac{1}{\sqrt N}\sum_{x\in\{0,1\}^n}\ket {f(x)}\ket x \\ \ket {\Psi_z} &= \sqrt{\frac{r}{N}}\sum_{t=0}^{N/r-1}\ket{x_0 + rt} \quad \propto \sum_{x:f(x)=z}\ket x \\ \ket {\tilde \Psi_z} &= Q_{N}^\dagger\ket {\Psi_z} \\ &= \sqrt{\frac{r}{N^2}}\sum_{t=0}^{N/r-1}\sum_{y=0}^{N-1}e^{-2\pi i(x_0+rt)y/N}\ket y \\ &= \sqrt{\frac{r}{N^2}}\sum_{y=0,ry\text{mod}=0}^{N-1}e^{-2\pi ix_0 y/N}\frac{N}{r}\ket y \\ &= \frac{1}{\sqrt r}\sum_{y=0,ry\text{mod}=0}^{N-1}e^{-2\pi ix_0 y/N}\ket y \end{aligned}

Algorithm

  1. find the order rr that ax mod N=ax+r mod Na^x~\text{mod}~N= a^{x+r}~\text{mod}~N using period finding in O(poly(n))\mathcal O(\text{poly}(n))
    1. Ψ=InHn0n0n=0n(1Nx{0,1}x)\ket \Psi = I^{\otimes n} \otimes H^{\otimes n} \ket 0^{\otimes n}\otimes \ket 0^{\otimes n } =\ket {0}^{\otimes n}\otimes \left(\frac{1}{\sqrt N}\underset{x\in\{0,1\}}{\sum}\ket x\right)
    2. Φ=OfΨ=1Nx{0,1}f(x)x\ket \Phi = O_f\ket \Psi = \frac{1}{\sqrt N}\underset{x\in\{0,1\}}{\sum}\ket {f(x)}\ket x
    3. measure f(x)=zf(x)=z then Ψz=rNt=0N/r1x0+rtx:f(x)=zx\ket{\Psi_z} = \sqrt{\frac{r}{N}}\overset{N/r-1}{\underset{t=0}{\sum}}\ket{x_0 + rt} \quad \propto \sum_{x:f(x)=z}\ket x
    4. Φ~=QNΨz=rN2t=0N/r1y=0N1e2πi(x0+rt)y/Ny=1ry=0,rymodN=0N1e2πix0y/Ny\tilde {\ket \Phi} = Q_N^\dagger \ket \Psi_z = \sqrt{\frac{r}{N^2}}\overset{N/r-1}{\underset{t=0}{\sum}}\overset{N-1}{\underset{y=0}{\sum}}e^{-2\pi i(x_0+rt)y/N}\ket y = \frac{1}{\sqrt r}\overset{N-1}{\underset{y=0,ry\text{mod}N=0}{\sum}}e^{-2\pi ix_0 y/N}\ket y
    5. measure Φ~\tilde {\ket \Phi} multiple times s1,,sis_1,\cdots, s_i, the results are multiples of rr, use euclid algorithm to compute the r=N/gcd(s1,,si)r = N / \text{gcd}(s_1,\cdots,s_i)
  2. if r mod 2=0r~\text{mod}~2 = 0 and ar/2±1 mod N0a^{r/2}\pm1~\text{mod}~N\neq 0
    1. candidate factor p~=gcd(ar/21,N)\tilde p=\text{gcd}(a^{r/2}-1,N) using euclid algorithm
  3. else go to 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
@classical
def euclid_gcd(a, b):
# O(logn)
return b if a==0 else euclid_gcd(b%a, a)
@quantum
def period_finding(a, n, N):
# a^r mod N = 1, O(N)
Of = lambda x: a**x % N
s0, s1 = None, None
while True:
x0, x1 = zeros(n), zeros(n)
x0, x1 = I(x0), H(x1)
x0, x1 = Of(x0, x1)
if not measure(x0).all_equals(): # O(2^n/n) = O(N/n) fail
continue
x1 = IQFT(x1)
if s0 is None: # fail O(1)
s0 = measure(x1)
continue
s1 = measure(x1)
N_r= euclid_gcd(s0, s1) # N/r if k coprime k'
s0, s1 = None, None
r = N / N_r
break

return r

def shor_factoring(N):
# find a factor of N
n = ceil(log2(N))

while True:
a = random(N)
K = euclid_gcd(a, N):
if K != 1:
return K

r = period_finding(a, n, N)
if is_odd(r): continue
g = eulid_gcd(N, a**(r//2 + 1))
if g != 1:
return g

Error Correction

Quantum operations

  • Density operator : ρ^=i,jρi,jij\hat \rho = \underset{i,j}{\sum}\rho_{i,j}\ket i\bra j
    • diagonal gives the probability of the state
  • Partial trace : TrB(a1a2b1b2)=a1a2Tr(b1b2)\text{Tr}_B(\ket {a_1}\bra {a_2}\otimes \ket {b_1}\bra{b_2}) = \ket {a_1}\bra{a_2}\text{Tr}(\ket {b_1}\bra{b_2})
  • Purification : ρA=TrR(ARAR)\rho^A = \text{Tr}_R(\ket{AR}\bra{AR})
  • Evolution : ρt=Uρ0U\rho_t = U\rho_0U^\dagger
  • Trace Preserving CP map : ρ(t)=τA(ρA(0))\rho(t)=\tau_A(\rho_A(0))
    • trace preserving : Tr(ρ)=1\text{Tr}(\rho) = 1
    • positive : λρ0\lambda_\rho\ge 0
    • complete positivity
  • Kraus Operator : ρ=iE^iρ0E^iE^i=eiU^e0\rho' = \sum_i\hat E_i \rho_0\hat E_i^\dagger\quad \hat E_i = \bra {e_i}\hat U\ket {e_0}

Damping channel

  • Amplitude DamplingE^1=[0γ00]E^0=[1001γ]\hat E_1 = \begin{bmatrix} 0 & \sqrt \gamma \\ 0 & 0 \end{bmatrix} \quad \hat E_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix}

    img
    • excited state 1\ket 1 damping to 0\ket 0 due to loss of energy
  • Phase Damping : E^1=[000r]E^0=[1001r]\hat E_1 = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt r \end{bmatrix} \quad \hat E_0 = \begin{bmatrix} 1 & 0\\ 0 & \sqrt{ 1- r} \end{bmatrix}

    img
    • lossing phase information, energy conserved

Error Channels

  • Bit Flip : E^1=pXE0=1pI\hat E_1 = \sqrt p X \quad E_0 = \sqrt{1-p} I

  • Phase Flip : E^1=pZE0=1pI\hat E_1 = \sqrt p Z \quad E_0 = \sqrt {1-p}I

  • Phase+Bit Flip : E^1=pYE^0=1pI\hat E_1 = \sqrt p Y\quad \hat E_0 = \sqrt {1-p} I

  • Depolarizing(Bit/Phase/Bit+Phase Flip) : E^1=p4XE^2=p4YE^3=p4ZE^0=(13p4)I\hat E_1 = \frac{p}{4}X\quad \hat E_2 = \frac{p}{4}Y\quad \hat E_3 = \frac{p}{4}Z\quad \hat E_0 = \left(1-\frac{3p}{4}\right)I

  • if code can correct Pauli XX and Pauli ZZ errors then it can correct all the Pauli operator errors

Tomography

  • Process tomography : determine the effect of a quantum operation E(ρ^)=i,jρi,jE(ij)\mathcal E(\hat \rho)=\underset{i,j}{\sum}\rho_{i,j}\mathcal E(\ket i\bra j)
    • the map E\mathcal E is linear
    • 44 inputs (11,00,+x+x,+y+y\ket 1\bra 1,\ket 0 \bra 0,\ket {+_x}\bra{+_x},\ket{+_y}\bra{+_y}) for 11 qubit, measure output ρ\rho for each input
  • State tomography : determine the state of a quantum system ρ=I+rσ2\rho = \frac{I+ \vec r \cdot \vec \sigma}{2}
    • 33 measurement for 11 qubit
    • d21d^2-1 (4n14^n-1?) measure for nn-qubit state

Classical Error Correction

classical coding theory :

  • number of physical bits : nn
  • number of logical bits : kk
  • minimal bit flip to change the code : dd
  • number of errors can be corrected : t=d12t=\frac{d-1}{2}

Quantum Error Correction

Fidelity : distance between quantum states

  • two pure states : F(ψ,ϕ)=ψϕ2F(\ket\psi ,\ket \phi) = |\bra \psi\ket {\phi}|^2
  • two mixed state : F(ρ,σ)=σρσF(\rho,\sigma)=\sqrt \sigma \rho \sqrt \sigma
  • one pure state one mixed state : F(ρ,ψ)=ψρψF(\rho,\ket \psi) = \bra \psi \rho \ket \psi

3-qubit bit-flip code : (α0+β1)00α000+β111(\alpha\ket 0 + \beta \ket 1)\otimes \ket 0 \otimes \ket 0 \to \alpha\ket {000}+\beta \ket{111}

img

syndrome extraction

img
  • no error

    (α000+β111)00(α000+β111)00(\alpha\ket{000}+\beta\ket{111})\ket{00}\to (\alpha\ket{000}+\beta\ket{111})\ket{00}

  • one error

    (α001+β110)00(α001β110)01(α010+β101)00(α010β101)11(α100+β011)00(α100β011)10\begin{aligned} (\alpha\ket{001}+\beta\ket{110})\ket{00}\to (\alpha\ket{001}\beta\ket{110})\ket{01} \\ (\alpha\ket{010}+\beta\ket{101})\ket{00}\to (\alpha\ket{010}\beta\ket{101})\ket{11} \\ (\alpha\ket{100}+\beta\ket{011})\ket{00}\to (\alpha\ket{100}\beta\ket{011})\ket{10} \end{aligned}

error state probability syndrome correction
IIIIII α000+β111\alpha\ket{000}+\beta\ket{111} (1p)3(1-p)^3 0,00,0 IIIIII
XIIXII α100+β011\alpha\ket{100}+\beta\ket{011} p(1p)2p(1-p)^2 1,01,0 XIIXII
IXIIXI α010+β101\alpha\ket{010}+\beta\ket{101} p(1p)2p(1-p)^2 1,11,1 IXIIXI
IIXIIX α001+β110\alpha\ket{001}+\beta\ket{110} p(1p)2p(1-p)^2 0,10,1 IIXIIX

3-qubit phase-flip code : (α0+β1)00α++++β(\alpha\ket 0 + \beta\ket 1)\otimes \ket 0 \otimes \ket 0 \to \alpha\ket{+++}+\beta\ket{---}

img

syndrome extraction

img $$ \ket +\ket +\overset{\text{CNOT}}{\to}\ket +\ket+ \\ \ket +\ket - \overset{\text{CNOT}}{\to}\ket -\ket - $$
  • no error

    ++++++++++++++\ket {+++}\ket{++}\to \ket{+++}\ket {++}\\ \ket {---}\ket{++}\to \ket{---}\ket{++}

  • one error

    ++++++++++++++++++++\ket {++-}\ket{++}\to\ket{++-}\ket{+-}\\ \ket {+-+}\ket{++}\to\ket{+-+}\ket{--}\\ \ket {-++}\ket{++}\to\ket{-++}\ket{-+}

error state probability syndrome correction
IIIIII α++++β\alpha\ket{+++}+\beta\ket{---} (1p)3(1-p)^3 0,00,0 IIIIII
ZIIZII α+++β+\alpha\ket{-++}+\beta\ket{+--} p(1p)2p(1-p)^2 1,01,0 ZIIZII
IZIIZI α+++β+\alpha\ket{+-+}+\beta\ket{-+-} p(1p)2p(1-p)^2 1,11,1 IZIIZI
IIZIIZ α+++β+\alpha\ket{++-}+\beta\ket{--+} p(1p)2p(1-p)^2 0,10,1 IIZIIZ

Shor 9-qubit concatenated code : α0L+β1L=α(111+000)3+β(111000)3\alpha\ket 0_L+\beta\ket 1_L= \alpha(\ket{111}+\ket{000})^{\otimes 3}+\beta(\ket{111}-\ket{000})^{\otimes 3}

img

syndrome

  • Bit errors : Z1Z2,Z2Z3, Z4Z5,Z5Z6, Z7Z8,Z8Z9Z_1Z_2,Z_2Z_3,~Z_4Z_5,Z_5Z_6,~Z_7Z_8,Z_8Z_9

  • Phase errors : X1X2X3X4X5X6,X4X5X6X7X8X9X_1X_2X_3X_4X_5X_6,X_4X_5X_6X_7X_8X_9

  • shor code can correct any single-qubit error that can be expressed as a linear combination of Pauli matrices

Knill-Laflamme condition

different errors lead to orthogonal states, E{a,b}E_{\{a,b\}} are error operators

ΦiEaEbΦj=Cabδij\bra {\Phi_i}E_a^\dagger E_b\ket{\Phi_j} = C_{ab}\delta_{ij}

error operators are linearly independent

ifEaEb=IthenCab=σab\text{if}\quad E_a^\dagger E_b = I\quad \text{then} \quad C_{ab}=\sigma_{ab}

Notation

  • δij\delta_{ij} : δij={1i=j0otherwise\delta_{ij}=\begin{cases}1&i=j\\0&\text{otherwise}\end{cases}
  • CabC_{ab} : constant independent of i,ji,j

Stabilizer

applying any of the stabilizer operators to a codeword returns the same codeword

Sϕ=ϕS\ket \phi =\ket\phi

Example : Bell state Φ+\ket {\Phi^+} stabilized by two operators

  • ZZΦ+=Φ+ZZ\ket {\Phi^+}=\ket{\Phi^+}
  • XXΦ+=Φ+XX\ket{\Phi^+}=\ket{\Phi^+}

Notation

  • P\mathcal P : pauli group : P={±I,±iI,±σx,±iσx,±σy,±iσy,±σz,±iσz}\mathcal P =\{\pm I,\pm iI,\pm \sigma_x,\pm i \sigma_x,\pm \sigma_y,\pm i\sigma_y,\pm \sigma_z,\pm i\sigma_z\}

    • Pn=Pn\mathcal P_n = \mathcal P^{\otimes n}

    • PnPn=(Pn,iPn,i)\mathcal P_n\mathcal P'_n=\bigotimes (\mathcal P_{n,i}\cdot \mathcal P'_{n,i})

      • AA=IA{X,Y,Z}A\cdot A = I\quad A\in\{X,Y,Z\}
      • AB=ϵABCiCA,B,C{X,Y,Z}A\cdot B = \epsilon_{ABC}iC\quad A,B,C\in\{X,Y,Z\}

      Example

      XZZXIIXZZX=X(iY)I(iY)XXZZXI\cdot IXZZX = X(iY)I(-iY)X

    • [Pn,Pn]=0i [Pn,i,Pn,i]=0[\mathcal P_n,\mathcal P'_n]=0\Leftrightarrow \forall i~[\mathcal P_{n,i},\mathcal P'_{n,i}]=0

      commute if all element commute

    • [Pn,Pn]=0i1{Pn,i,Pn,i}=0 mod 2=0[\mathcal P_n,\mathcal P_n']=0 \Leftrightarrow \sum_i\mathbb 1_{\{\mathcal P_{n,i},\mathcal P'_{n,i}\}=0}~\text{mod}~2=0

      commute if even number of elements anti commute

    • {Pn,Pn}=0i1{Pn,i,Pn,i}=0 mod 2=1\{\mathcal P_n,\mathcal P'_n\}=0\Leftrightarrow \sum_i\mathbb 1_{\{\mathcal P_{n,i},\mathcal P'_{n,i}\}=0}~\text{mod}~2=1

      anti commute if odd number of elements anti commute

  • σx,σy,σz\sigma_x,\sigma_y,\sigma_z : pauli matrices, σx=[0110]σy=[0ii0]σz=[1001]\sigma_x = \begin{bmatrix}0&1\\1&0\end{bmatrix}\quad \sigma_y = \begin{bmatrix}0&-i\\i&0\end{bmatrix}\quad \sigma_z = \begin{bmatrix}1&0\\0&-1\end{bmatrix}

    • [σi,σj]=2iϵijkσk{[\sigma_i,\sigma_j]} = 2i\epsilon_{ijk}\sigma_k, e.g.[σi,σi]=0[σi,I]=0[\sigma_i,\sigma_i] = 0\quad [\sigma_i, I] = 0
    • {σi,σj}=2δij\{\sigma_i,\sigma_j\} = 2\delta_{ij}, e.g.{σi,σj}=0ij\{\sigma_i,\sigma_j\} = 0\quad i\neq j
    • σi2=1\sigma_i^2 = 1
  • [,][\cdot,\cdot] : commute [A,B]=ABBA[A,B]=AB-BA

    • A,B commute[A,B]=0A,B \text{ commute}\Leftrightarrow [A,B]=0
  • {,}\{\cdot,\cdot\} : anti commute {A,B}=AB+BA\{A,B\}=AB+BA

    • A,B anti-commute{A,B}=0A,B \text{ anti-commute}\Leftrightarrow \{A,B\}=0
  • ϵijk\epsilon_{ijk} : Levi-Civita symbol

    • even permutation : ϵ{123,231,312}=1\epsilon_{\{123,231,312\}} = 1
    • odd permutation : ϵ{213,132,321}=1\epsilon_{\{213,132,321\}} = -1
    • two of i,j,ki,j,k equal : ϵijk=0\epsilon_{ijk} =0
  • kk : number of element in stabilizer generator

  • nn : number of element in the pauli group

Stabilizer group :

  • all elements commute with each other
  • does not contain InI^{\otimes n}

Stabilizer generator : minimal set of operators generate all members by multiplication S1,,Sk{S1a1Skak}ai{0,1,2}\langle S_1,\cdots,S_k\rangle\to \{ S_1^{a_1}\cdots S_k^{a_k}\} \quad a_i\in\{0,1,2\}

Example

ZZI,IZZstabilizer generator{III,ZZI,ZIZ,IZZ}stabilizer groupk=2n=3\underbrace{\langle ZZI,IZZ\rangle}_{\text{stabilizer generator}}\to \underbrace{\{III,ZZI,ZIZ,IZZ\}}_{\text{stabilizer group}}\quad \begin{matrix}k=2\\n=3\end{matrix}

Example :

  • 3-qubit bit-flip code : S1ZZIS2IZZZLZZZXLXXX\begin{array}{c|ccc}S_1&Z&Z&I\\S_2&I&Z&Z\\\hline Z_L&Z&Z&Z\\X_L&X&X&X\end{array}
  • 3-qubit phase-flip code : S1XXIS2IXXZLXXXXLZZZ\begin{array}{c|ccc}S_1&X&X&I\\S_2&I&X&X\\\hline Z_L&X&X&X\\X_L&Z&Z&Z\end{array}
  • shor code : S1ZZIIIIIIIS2IZZIIIIIIS3IIIZZIIIIS4IIIIZZIIIS5IIIIIIZZIS6IIIIIIIZZS7XXXXXXIIIS8IIIXXXXXXZLXXXIIIIIIXLZIIZIIZII\begin{array}{c|ccccccccc}S_1&Z&Z&I&I&I&I&I&I&I\\S_2&I&Z&Z&I&I&I&I&I&I\\S_3&I&I&I&Z&Z&I&I&I&I\\S_4&I&I&I&I&Z&Z&I&I&I\\S_5&I&I&I&I&I&I&Z&Z&I\\S_6&I&I&I&I&I&I&I&Z&Z\\S_7&X&X&X&X&X&X&I&I&I\\S_8&I&I&I&X&X&X&X&X&X\\\hline Z_L&X&X&X&I&I&I&I&I&I&\\X_L&Z&I&I&Z&I&I&Z&I&I\end{array}
  • stean code : S1IIIZZZZS2IZZIIZZS3ZIZIZIZS4IIIXXXXS5IXXIIXXS6XIXIXIXZLZZZZZZZXLXXXXXXX\begin{array}{c|ccccccc}S_1&I&I&I&Z&Z&Z&Z\\S_2&I&Z&Z&I&I&Z&Z\\S_3&Z&I&Z&I&Z&I&Z\\S_4&I&I&I&X&X&X&X\\S_5&I&X&X&I&I&X&X\\S_6&X&I&X&I&X&I&X\\\hline Z_L&Z&Z&Z&Z&Z&Z&Z\\X_L&X&X&X&X&X&X&X\end{array}
  • 5-qubit code : S1XZZXIS2IXZZXS3XIXZZS4ZXIXZZLZZZZZXLXXXXX\begin{array}{c|ccccc}S_1&X&Z&Z&X&I\\S_2&I&X&Z&Z&X\\S_3&X&I&X&Z&Z\\S_4&Z&X&I&X&Z\\\hline Z_L &Z&Z&Z&Z&Z\\X_L&X&X&X&X&X\end{array}

Stabilizer subspace dimension : 2nk2^{n-k}

  • code subspace e.g. 0L\ket 0_L
  • orthogonal projector in subspace : PS0L=0LPS1L=1LPSψ=0P_S\ket 0_L = \ket 0_L \quad P_S\ket 1_L = \ket 1_L \quad P_S\ket \psi=0

Stabilizer group element : 2k2^k

Error-Syndrome : $\begin{aligned}{[}E,S_i]&=0\Leftrightarrow \text{error not detected (1)(1)}\{E,S_i}&=0\Leftrightarrow \text{error detected (1)(-1)} \end{aligned}$

Example : bit flip error (XX error) at position 11

S={XZZXI,IXZZX,XIXZZ,ZXIXZ,ZZXIX}E=XIIIIS=\{XZZXI,IXZZX,XIXZZ,ZXIXZ,ZZXIX\}\quad E = XIIII

result : {1,1,1,1,1}\{1,1,1,-1,-1\}

stabilizer + EC : for [EbEa,Sk]=0jEbEaSki=λ\text{for}~[E_b^\dagger E_a ,S_k]=0\quad\bra jE_b^\dagger E_a S_k\ket i = \lambda

projector into subspacePj=In+Sj2P_j = \frac{I^{\otimes n}+S_j}{2} , the eigen value of projected state will only contains {0,1}\{0,1\}

complexity : O(n)O(n) stabilizer operators with O(n)O(n) Paulis - O(n2)O(n^2) updates per gate

Gottesman-Knill theorem : A quantum circuit performing

  1. Clifford gates (exception : T-gate, Toffoli gate)
  2. measurement of the Pauli group operators
  3. conditional Clifford group operations

can be simulated efficiently on a classical computer

surface code

img

syndrome

img

Hamiltonian Simulation

kk-local Hamiltonian : H = \sum_{i=1}^m H_i \quad \text{H_i$ acting on no more than kk qubits}$

Example : XYX-Y model

H=i=1n(JxXiXi+1+JyYiYi+1+JzZiZi+1+hZi)H = \sum_{i=1}^n (J_xX_iX_{i+1}+J_yY_iY_{i+1}+J_zZ_iZ_{i+1}+hZ_i)

22-local hamiltonian

Solovay-Kitaev theorem :unitary operator UU(2n)U\in \mathcal U(2^n) which acts non-trivially on kk qubits, a universal set of gates S\mathcal S and ε>0\varepsilon>0, U~U(2n)\exists \tilde U\in \mathcal U(2^n) composed of O(logc(1/ε))\mathcal O(\text{log}^c(1/\varepsilon)) gates from S\mathcal S such that U~U<ε\Vert \tilde U-U\Vert<\varepsilon with c<4c<4

  • if all HiH_i commute, eiHit=i=1meiHite^{-i\sum H_i t}=\prod_{i=1}^m e^{-iH_it}

Suzuki-Trotter decomposition : eiHt=(eiH1t/KeiH2t/KeiHmt/K)K+O(m2h2t2K)e^{iHt} = (e^{iH_1t/K}e^{iH_2t/K}\cdots e^{iH_mt/K})^K + \mathcal O(m^2h^2\frac{t^2}{K})

  • total error :ϵT=mϵLK+O(m2h2t2K)\epsilon_T = m\epsilon_L K +\mathcal O\left(\frac{m^2h^2t^2}{K}\right)
  • Lie-Trotter decomposition : e(A+B)x=eAeB12x2[A,B]+O(x3)e^{(A+B)x} = e^Ae^B -\frac{1}{2}x^2[A,B]+\mathcal O(x^3), if [A,B]=0[A,B]=0 then ex(A+B)eAeBϵ\Vert e^{x(A+B)}-e^Ae^B\Vert \le \epsilon
  • number of local terms in a kk-local n-qubit Hamiltonian : nkn^k

Notation

  • mm : number of terms for Hamiltonian decomposition H=i=1mHiH = \sum_{i=1}^m H_i
  • hh : maximal norm of Hamiltonian term : Hih\Vert H_i\Vert\le h
  • KK : Trotter step, Δt=tK\Delta t =\frac{t}{K}
  • ϵT,ϵL\epsilon_T,\epsilon_L : total error, local error for Trotter step

Quantum Information Processing:Concept
https://walkerchi.github.io/2023/08/25/ETHz/ETHz-QIP1/
Author
walkerchi
Posted on
August 25, 2023
Licensed under